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Abstract

Feature trajectories have shown to be ef cient for rep-
resenting videos. Typically, they are extracted using the
KLT tracker or matching SIFT descriptors between frames.
However, the quality as well as quantity of these trajecto-
ries is often not suf cient. Inspired by the recent success
of dense sampling in image classi cation, we propose an
approach to describe videos by dense trajectories. We sam-
ple dense points from each frame and track them based on
displacement information from a dense optical ow eld.
Given a state-of-the-art optical ow algorithm, our trajec-
tories are robust to fast irregular motions as well as shot
boundaries. Additionally, dense trajectories cover the mo-
tion information in videos well.

We, also, investigate how to design descriptors to encode
the trajectory information. We introduce a novel descriptor
based on motion boundary histograms, which is robust to
camera motion. This descriptor consistently outperforms
other state-of-the-art descriptors, in particular in uncon-
trolled realistic videos. We evaluate our video description
in the context of action classi cation with a bag-of-features
approach. Experimental results show a signi cant improve-
ment over the state of the art on four datasets of varying

KLT Dense trajectories
Figure 1. A comparison of the KLT tracker and dense trajectories.
Red dots indicate the point positions in the current frame. Dense

. . trajectories are more robust to irregular abrupt motions, in partic-
dif culty, i.e. KTH, YouTube, Hollywood2 and UCF sports. ular at shot boundaries (second row), and capture more accurately

complex motion patterns.

1. Introduction descriptors, such as 3D-SIFT [25], HOG3D [11], extended

Local features are a popular way for representing videos, SURF [33], or Local Trinary Patterns [34].
They achieve state-of-the-art results for action classi cation =~ However, the 2D space domain and 1D time domain in
when combined with a bag-of-features representation. Re-videos have very different characteristics. It is, therefore,
cently, interest point detectors and local descriptors haveintuitive to handle them in a different manner than via in-
been extended from images to videos. Laptev and Linde-terest point detection in a joint 3D space. Tracking interest
berg [13] introduced space-time interest points by extend- points through video sequences is a straightforward choice.
ing the Harris detector. Other interest point detectors in- Some recent methods [20, 21, 27] show impressive results
clude detectors based on Gabor Iters [1, 5] or on the de- for action recognition by leveraging the motion information
terminant of the spatio-temporal Hessian matrix [33]. Fea- of trajectories. Messingt al. [21] extracted feature trajecto-
ture descriptors range from higher order derivatives (local ries by tracking Harris3D interest points [13] with the KLT
jets), gradient information, optical ow, and brightness in- tracker [18]. Trajectories are represented as sequences of
formation [5, 14, 24] to spatio-temporal extensions of image log-polar quantized velocities. Matikainen al. [20] used
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Figure 2. lllustration of our dense trajectory description. Left: Feature points are sampled densely for multiple spatial scales. Middle:
Tracking is performed in the corresponding spatial scale bvieames. Right: Trajectory descriptors are based on its shape represented by
relative point coordinates as well as appearance and motion information over a local neighborNoodMfpixels along the trajectory.

In order to capture the structure information, the trajectory neighborhood is divided into a spatio-temporal grichof sike n .

a standard KLT tracker. Trajectories in a video are clus- segmented feature tracks to separate the motion character-
tered, and an af ne transformation matrix is computed for izing the actions from the dominant camera motion.
each cluster center. The elements of the matrix are used to To overcome the problem of camera motion, we intro-
represent the trajectories. Sehal. [27] extracted trajecto-  duce a local descriptor that focuses on foreground motion.
ries by matching SIFT descriptors between two consecutiveOur descriptor extends the motion coding scheme based
frames. They imposed a unigue-match constraint among theon motion boundaries developed in the context of human
descriptors and discarded matches that are too far apart. detection [4] to dense trajectories. We show that motion

Dense sampling has shown to improve results over boundaries encoded along the trajectories signi cantly out-
sparse interest points for image classi cation [7, 22]. The perform state-of-the-art descriptors.
same has been observed for action recognition in a recent This paper is organized as follows. In section 2, we in-
evaluation by Wangt al. [32], where dense sampling atreg- troduce the approach for extracting dense trajectories. We,
ular positions in space and time outperforms state-of-the-artthen, show how to encode feature descriptors along the tra-
space-time interest point detectors. In contrast, trajectoriegectories in section 3. Finally, we present the experimental
are often obtained by the KLT tracker, which is designed to setup and discuss the results in sections 4 and 5 respectively.
track sparse interest points [18]. Matching dense SIFT de-The code to compute dense trajectories and their description
scriptors is computationally very expensive [15] and, thus, is available onlin&
infeasible for large video datasets.

In this paper, we propose an ef cient way to extract 2, Dense trajectories
dense trajectories. The trajectories are obtained by tracking
densely sampled points using optical ow elds. The num- Dense trajectories are extracted for multiple spatial
ber of tracked points can be scaled up easily, as dense owscales, see Figure 2. Feature points are sampled on a grid
elds are already computed. Furthermore, global smooth- SPaced byW pixels and tracked in each scale separately.
ness constraints are imposed among the points in dense optEExperimentally, we observed that a sampling step size of
cal ow elds, which results in more robust trajectoriesthan W = 5 is dense enough to give goog results. We used
tracking or matching points separately, see Figure 1. Densed Spatial scales spaced by a factorlsf 2. Each point
trajectories have not been employed previously for action Pt = (Xt;¥t) at framet is tracked to the next franter 1 by
recognition. Sundararet al. [28] accelerated dense trajec- Median lItering in a dense optical ow eld = (u;vt).

tories computation on a GPU. Bretal. [2] segmented ob- b =y yia ) = (XGy) + (M ! ey ()
jects by clustering dense trajectories. A similar approach is
used in [17] for video object extraction. whereM is the median Itering kernel, an¢k;;y;) is the

Motion is the most informative cue for action recogni- rounded position ofx;;y;). This is more robust than bi-
tion. It can be due to the action of interest, but also be |inear interpolation used in [28], especially for points near
caused by background or the camera motion. This is in-motion boundaries. Once the dense optical ow eld is
evitable when dealing with realistic actions in uncontrolled Computed, points can be tracked very dense|y without ad-
settings. How to separate action motion from irrelevant mo- gitional cost. Points of subsequent frames are concatenated

tion is still an open prOblem. Ikizler-Cinbet al. [9] applled to form a trajectory(Pt; P’[+l : Pt+2 Do ) To extract dense
video stabilization via a motion compensation procedure,

where most camera motion is removed. Uenwiral. [30] Lhttp://lear.inrialpes.fr/software
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Figure 3. lllustration of the information captured by HOG, HOF, and MBH descriptors. For each image, gradient/ ow orientation is
indicated by color (hue) and magnitude by saturation. Motion boundaries are computed as gradients of the x and y optical ow components
separately. Compared to optical ow, motion boundaries suppress most camera motion in the background and highlight the foreground
motion. Unlike gradient information, motion boundaries eliminate most texture information from the static background.

optical ow, we use the algorithm byarneback [6] as im-  of the displacement vectors:
plemented in the OpenCYV libratyWe found this algorithm
to be a good compromise between accuracy and speed. sh= 1 o

@)

A common problem in tracking is drifting. Trajectories

tend to drift from their initial location during tracking. To  \ve refer to this vector by trajectory descriptor. We have

avoid this problem, we limit the length of a trajectorylto 550 evaluated representing trajectories at multiple temporal
frames. As soon as a trajectory exceeds lemgtitis re-  gcgles, in order to recognize actions with different speeds.
moved from the tracking process, see Figure 2 (middle). To yowever, this did not improve the results in practice. There-

assure a dense coverage of the video, we verify the presencgyre e use trajectories with a xed lengthin our exper-
of a track on our dense grid in every frame. If no tracked jnents.

pointis found in &V W neighborhood, this feature point
is sampled and added to the tracking process. Experimen3, Trajectory-aligned descriptors

tally, we chose a trajectory length bf= 15 frames.
Local descriptors computed in a 3D video volume

around interest points have become a popular way for video
representation [5, 11, 14, 25, 33]. To leverage the motion
information in our dense trajectories, we compute descrip-
tors within a space-time volume around the trajectory, see
Figure 2 (right). The size of the volumels N pixels and

In homogeneous image areas without any structure, it is
impossible to track points. Here, we use the same criterion
as Shi and Tomasi [26]. When a feature point is sampled,
we check the smaller eigenvalue of its autocorrelation ma-
trix. If itis below a threshold, this point will not be included

in the tracking process. Since for action recognition we are L frames. To embed structure information in the represen-

mainly interested in dynamic information, static trajectories tation, the volume is subdivided into a spatio-temporal grid

are pruned in a pre-processing stage. Trajectories with sud—Of sizen n n .The default parameters for our exper-
den large displacements, most likely to be erroneous, arg - entsareN = 32'n =2'n =3 . which has shown to
?'30 removed. Figure 1 compares (_jense_ and KLT trajecto-p . optimal based on cross validation on the training set of
ries. We can observe that dense trajectories are more robus[

: . . he Hollywood2. We give results using different parameter
and denser than the trajectories obtained by the KLT tracker.Settings in section 5.3.

The shape of a trajectory encodes local motion patterns. Among the existing descriptors for action recognition,
Given a trajectory of length, we describe its shape by a HOGHOF [14] has shown to give excellent results on a va-
sequencé& = ( Py;::i; P 1) of displacement vec-  riety of datasets [32]. HOG (histograms of oriented gradi-
tors Pi = (Pi1 Pt) = (X412 Xt;Yi#1 Yi)- The ents) [3] focuses on static appearance information, whereas
resulting vector is normalized by the sum of the magnitudes HOF (histograms of optical ow) captures the local motion

information. We compute HOGHOF along our dense trajec-
tories. For both HOG and HOF, orientations are quantized
2http://opencv.willowgarage.com/wiki/ into 8 bins using full orientations, with an additional zero
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Walking Jogging Running Boxing Waving Clapping

Biking Shooting Spiking Swinging Walking dog
AnswerPhone GetOutCar HandShake HugPerson Kiss
Diving Kicking Walking Skateboarding High-Bar-Swinging

Figure 4. Sample frames from video sequences of KTH ( rst row), YouTube (second row), Hollywood2 (third row) and UCF sports (last
row) action datasets.

bin for HOF (.e., in total 9 bins). Both descriptors are nor- 4. Experimental setup

malized with theirL, norm. Figure 3 shows a visualization , , .
of HOGHOF. In this section, we rst describe the datasets used for

action recognition. We, then, brie y present the bag-of-
features model used for evaluating our dense trajectory fea-
tures as well as the KTL tracking baseline.

Optical ow computes the absolute motion, which in-
evitably includes camera motion [9]. Dalet al. [4] pro-
posed the MBH (motion boundary histogram) descriptor
for human detection, where derivatives are computed sep-4.1. Datasets

arately for the horizontal and vertical components of the . . ]
optical ow. This descriptor encodes the relative motion Our dense trajectories are extensively evaluated on four

between pixels, as shown in Figure 3. Here we use MBH to standard action datasets: KTH, YouTube, Hollywood2, and
describe our dense trajectories. UCF sports, see Figure 4. These datasets are very di-

verse. The KTH dataset views actions in front of a uniform
background, whereas the Hollywood2 dataset contains real
movies with signi cant background clutter. The YouTube
videos are low quality, whereas UCF sport videos are high
resolution.

The MBH descriptor separates the optical ow eld
I = (Ix;ly) into its x andy component. Spatial deriva-
tives are computed for each of them and orientation infor-
mation is quantized into histograms, similarly to the HOG

descriptor. We obtain an 8-bin histogram for each com- . . .
ponent, and normalize them separately with ithenorm. The KTH d_atas_et [2.43 con5|s_ts of SIX human _act|on
classes: walking, jogging, running, boxing, waving and

Since MBH represents the gradient of the optical ow, con- . R -
stant motion information is suppressed and only informa- plapplng. Each action is performed seyeral “”.‘es by 25 sub-
tion about changes in the ow eld (i.e., motion boundaries) jects. The sequences were recorded in four different scenar-

is kept. Compared to video stabilization [9] and motion ios: outdoors, outdoors with scale variation, outdoors with
compensation [30], this is a simple way to eliminate noise different clothes and indoors. The background is homoge-

due to background motion. This descriptor yields excel- "€0US and static in most sequences. In total, the data con-

lent results when combined with our dense trajectories. Forfr:SetrS]tglf 32:t?1;1) \c')'fdtiz zimgléz V;iigoél?r\:\(le t?:rr?pr)llge??:tg)iggt”_
instance, on the YouTube dataset [16], MBH signi cantl ) ' .
outperforms HOF, see section 5 1ol g Y set (9 subjects: 2,3,5,6,7,8,9, 10, and 22) and training set

. (the remaining 16 subjects). As in the initial paper [24], we
I_:or both HOF_ and MBH descriptors, we reuse the densetrain and evaluate a multi-class classi er and report average
optical ow that is already computed to extract dense tra-

) . . . accuracy over all classes as performance measure.
jectories. This makes our feature computation process very

ef cient. 3http://www.nada.kth.se/cvap/actions/
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The YouTube dataset [16] contains 11 action cate- Descriptors are assigned to their closest vocabulary word
gories: basketball shooting, biking/cycling, diving, golf using Euclidean distance. The resulting histograms of vi-
swinging, horse back riding, soccer juggling, swinging, ten- sual word occurrences are used as video descriptors.
nis swinging, trampoline jumping, volleyball spiking, and For classi cation we use a non-linear SVM with &-
walking with a dog. This dataset is challenging due to large kernel [14]. Different descriptors are combined in a multi-
variations in camera motion, object appearance and posechannel approach as in [31]:

object scale, viewpoint, cluttered background and illumi- X 1
nation conditions. The dataset contains a total of 1168 se- K (xi;%j) = exp( ED(X&X]'C)); (3
guences. We follow the original setup [16] using leave one c

out cross validation for a pre-de ned set of 25 folds. Av- WhereD(xC;XjC) is the 2 distance between videq and

erage accuracy over all classes is reported as performancg; with respect to the-th channel. A°¢ is the mean value

measure. of 2 distances between the training samples for ¢k
The Hollywood2 dataset [19] has been collected from  channel [36]. In the case of multi-class classi cation, we

69 different Hollywood movies. There are 12 action classes: yse aone_against_resapproach and select the class with

answering the phone, driving car, eating, ghting, getting the highest score.

out of car, hand shaking, hugging, kissing, running, sitting

down, sitting up, and standing up. In our experiments, we 4.3. Baseline KLT trajectories

used the clean training dataset. In total, there are 1707 ac-

from different movies. The performance is evaluated by te
computing the average precision (AP) for each of the actiont
classes and reporting the mean AP over all classes (mAP)t
asin[19].

The UCF sport dataset [23] contains ten human ac-

cted, and added to the tracker, which is somewhat denser
han space-time interest points [32]. Interest points are
racked through the video fdr frames. This is identical to

the procedure used for our dense trajectories. We also use
i e the same descriptors for the KLT trajectoriegy the trajec-
tions: swinging (on the pommel horse and on the 001), 1 shane is represented by normalized relative point co-

diving, kicking (a ball), weight-lifting, horse-riding, run- , jinates and HOG, HOF, MBH descriptors are extracted
ning, skateboarding, swinging (at the high bar), golf swing- 0 .+ th,e trajectoriés. '

ing and walking. The dataset consists of 150 video samples
which show a large intra-class variability. To increase the .

amount of data samples, we extend the dataset by adding a5' Experimental results
horizontally ipped version of each sequence to the dataset.  |n this section, we evaluate the performance of our de-
Similar to the KTH actions dataset, we train a multi-class scription and compare to state-of-the-art methods. We also
classi er and report the average accuracy over all classesdetermine the in uence of different parameter settings.

We use a leave-one-out setup and test on each original se- _ _ _

quence while training on all other sequences together with5.1. Evaluation of our dense trajectory descriptors
their ipped versions (i.e., the ipped version of the tested

. o In this section we compare dense and KLT trajectories
sequence is removed from the training set).

as well as the different descriptors. We use our default pa-
rameters for this comparison. To compute the descriptors,
we setN =32;n =2;n =3 for both baseline KLT and

To evaluate the performance of our dense trajectories, wedense trajectories. We x the trajectory lengthlto= 15,
use a standard bag-of-features approach. We rst constructand the dense sampling step sizéMo=5.
a codebook for each descriptor (trajectory, HOG, HOF,  Results for the four datasets are presented in Table 1.
MBH) separately. We x the number of visual words per de- Overall, our dense trajectories outperform the KLT trajec-
scriptor to 4000 which has shown to empirically give good tories by2%to 6%. Since the descriptors are identical, this
results for a wide range of datasets. To limit the complexity, demonstrates that our dense trajectories describe the video
we cluster a subset of 100,000 randomly selected trainingstructures more accurately.
features usingg-means. To increase precision, we initialize  Trajectory descriptors, which only describe the motion
k-means 8 times and keep the result with the lowest error.of the trajectories, give surprisingly good results by them-
selves,e.g 90:2% on KTH and47:7% on Hollywood2 for

4.2. Bag of features

datr:;‘;'t”h“t“m““l““'CS'”Cf'ed“/ liujg/YouTube\_Action\ dense trajectories. This con rms the importance of mo-
"~ Shitp:/llear.inrialpes. fr/data tion information contained in the local trajectory pgtterns.
Shttp:/Awww.cs.ucf.edulvision/public_html/ We report only67:2% on YouTube because the trajectory
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KTH YouTube Hollywood2 UCF sports
KLT Dense trajectoried KLT Dense trajectorie§ KLT Dense trajectorie§ KLT Dense trajectorieq
Trajectory || 88.4% 90.2% 58.2% 67.2% 46.2% 47.7% 72.8% 75.2%
HOG 84.0% 86.5% 71.0% 74.5% 41.0% 41.5% 80.2% 83.8%
HOF 92.4% 93.2% 64.1% 72.8% 48.4% 50.8% 72.7% 77.6%
MBH 93.4% 95.0% 72.9% 83.9% 48.6% 54.2% 78.4% 84.8%
Combined || 93.4% 94.2% 79.9% 84.2% 54.6% 58.3% 82.1% 88.2%

Table 1. Comparison of KLT and dense trajectories as well as different descriptors on KTH, YouTube, Hollywood2 and UCF sports. We

report average accuracy over all classes for KTH, YouTube and UC

F sports and mean AP over all classes for Hollywood?2.

| KTH | YouTube | Hollywood2 | UCF sports ]
Laptevet al. [14] 91.8% Liu et al. [16] 71.2% | Wangetal [32] 47.7% Wanget al. [32] 85.6%
Yuanet al. [35] 93.3% | lkizler-Cinbisetal [9] 75.21% | Gilbertetal [8] 50.9% | Kovashkaet al [12] 87.27%
Gilbertet al. [8] 94.5% Ullahetal [31] 53.2% Klaseret al. [10] 86.7%
Kovashkaet al. [12] 94.53% Tayloretal [29] 46.6%
Our method 94.2% Our method 84.2% Our method 58.3% Our method 88.2%

Table 2. Comparison of our dense trajectories characterized by our combined descriptor (Trajectory+HOG+HOF+MBH) with state-of-the-

art methods in the literature.

descriptors capture lots of motions from camera. Gener-a
ally, HOF outperforms HOG as motion is more discrimi- b

nd Hollywood2. On YouTube, our dense trajectories give
est results for 8 out of 11 action classes when compare

native than static appearance for action recognition. How- with the KLT baseline and the approach of [9], see Table 3.
ever, HOG gets better results both on YouTube and UCFOn Hollywood2, we compare the AP of each action class
sports. The HOF descriptors computed on YouTube videoswith the KLT baseline and the approach of [31], i.e., a com-

are heavily polluted by camera motions, since many videoshb

ination of 24 spatio-temporal grids, see Table 4. Our dense

are collected by hand-held cameras. Static scene context israjectories yield best results for 8 out of 12 action classes.

very important for UCF sports actions which often involve

speci ¢ equipment and scene types. MBH consistently out- |

performs the other descriptors on all four datasets. The im-
provement is most signi cant on the uncontrolled realistic
datasets YouTube and Hollywood2. For instance, MBH is
11:1% better than HOF on YouTube. This con rms the ad-
vantage of suppressing background motion when dealing
with optical ow.

5.2. Comparison to the state of the art

Table 2 compares our results to state of the art. On KTH,
we obtain94:2% which is comparable to the state of the

art, i.e.,94:53%[12]. Note that on this dataset several au-

| KLT  Dense trajectories Ikizler-Cinbis [9]

b_shoot || 34.0% 43.0% 48.48%
bike 87.6% 91.7% 75.17%
dive 99.0% 99.0% 95.0%
golf 95.0% 97.0% 95.0%
h_ride 76.0% 85.0% 73.0%
sjuggle 65.0% 76.0% 53.0%
swing 86.0% 88.0% 66.0%
t_swing 71.0% 71.0% 77.0%
tjump || 93.0% 94.0% 93.0%
v_spike 96.0% 95.0% 85.0%
walk 76.4% 87.0% 66.67%
Accuracy || 79.9% 84.2% 75.21%

thors use a leave-one-out cross-validation setting. Here, w
only compare to those using the standard setting [24]. Inter-
estingly, MBH alone obtains a slightly better performance

Table 3. Accuracy per action class for the YouTube dataset. We
compare with the results reported in [9].

on KTH, i.e., 95:.0%, than combining all the descriptors

together. Ullahet al. [31] also found that a combination
of descriptors performed worse than a subset of them. On
YouTube, we signi cantly outperform the current state-of-
the-art method [9] b¥%, where video stabilization is used
to remove camera motion. We repb&3% on Hollywood2
which is an improvement &% over [31]. Note that Ullah

et al. [31] achieved better results by using additional images
collected from Internet. The difference between all methods
is rather small on UCF sports, which is largely due to the
leave-one-out settings.g 149 videos are used for training
and only one for testing. Nevertheless, we outperform the

state of the art [12] byL.%.

We also compare the results per action class for YouTubeT
d
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| KLT  Dense trajectories  Ullah [31]
AnswerPhone|| 18.3% 32.6% 25.9%
DriveCar 88.8% 88.0% 85.9%
Eat 73.4% 65.2% 56.4%
FightPerson || 74.2% 81.4% 74.9%
GetOutCar || 47.9% 52.7% 44.0%
HandShake || 18.4% 29.6% 29.7%
HugPerson || 42.6% 54.2% 46.1%
Kiss 65.0% 65.8% 55.0%
Run 76.3% 82.1% 69.4%
SitDown 59.0% 62.5% 58.9%
SitUp 27.7% 20.0% 18.4%
StandUp 63.4% 65.2% 57.4%
mAP 54.6 58.3% 51.8%

able 4. Average precision per action class for the Hollywood2
ataset. We compare with the results reported in [31].



Figure 5. Results for different parameter settings on the Hollywood2 and YouTube datasets.

5.3. Evaluation of trajectory parameters els. A sampling step o pixels is extremely dense, i.e.,

) . every other pixel is sampled, and does not justify the minor
To evaluate the different parameter settings for dense tra‘gain obtained.

jectories, we report results on You.Tube and Hollywood2, as The results are relatively stable with regard to the neigh-
they are larger and more challenging than the other two. Wep srhood sizeN . see Figure 5 (bottom left). On Holly-
study the impact of the trajectory length, sampling step Size,\ 00d2, results are almost the same wherchanges from

neighborhood size and cell grid structure. We evaluate the24 pixels to 48 pixels. The best result on YouTub84s7%
performance for a parameter at the time. The other param-, b o neighborhood size af0 pixels. Dividing the video

eters are xed tf) the defaplt values, 1€, trajectory Igngth volume into cells improves the results on both Hollywood?2

L =15, samplmg' step siz&/ = 5, neighborhood size and YouTube. In particular, the performance increases sig-

N =32 and cell grid structure =2;n =3. ni cantly when the spatial cell grich is increased from 1
Figure 5 (top, left) evaluates the impact of the trajectory to 2, see Figure 5 (bottom right). However, further increas-

lengthL . For both datasets an increase of lerigimproves ing the number of cells, i.e., beyomd = 2;:n =3, does
performance up to a certain poirt£15 or 20), and then ot improve the results.

decreases slightly, since longer trajectories have a higher
chance to drift from the initial position. We achieve the best .
results with a trajectory length af or 20 frames. 6. Conclusions

With respect to the sampling step sig& Figure 5 (top, This paper has introduced an approach to model videos
right) shows that dense sampling improves the results as théoy combining dense sampling with feature tracking. Our
step size decreases. This is consistent with dense samplindense trajectories are more robust than previous video de-
at regular positions [32], where more features in general im- scriptions. They capture the motion information in the
prove the results. We repd8:9% (58:3%) on Hollywood2 videos ef ciently and show improved performance over
and84:4% (84:2%) on YouTube for a step size &f(5) pix- state-of-the-art approaches for action classi cation. We

3175



have also introduced an ef cient solution to remove camera [17] W.-C. Lu, Y.-C. F. Wang, and C.-S. Chen. Learning dense

motion by computing motion boundaries descriptors along optical- ow trajectory patterns for video object extraction.
the dense trajectories. This successfully segments the rele-  In IEEE Conference on Advanced Video and Signal Based
vant motion from background motion, and outperforms pre- Surveillance2010.

vious video stabilization methods. Our descriptors combine [18] B. D. Lucas and T. Kanade. An iterative image registration

trajectory shape, appearance, and motion information. Such

a representation has shown to be ef cient for action classi -
cation, but could also be used in other areas, such as actio#g]
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