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Abstract

Feature trajectories have shown to be ef�cient for rep-
resenting videos. Typically, they are extracted using the
KLT tracker or matching SIFT descriptors between frames.
However, the quality as well as quantity of these trajecto-
ries is often not suf�cient. Inspired by the recent success
of dense sampling in image classi�cation, we propose an
approach to describe videos by dense trajectories. We sam-
ple dense points from each frame and track them based on
displacement information from a dense optical �ow �eld.
Given a state-of-the-art optical �ow algorithm, our trajec-
tories are robust to fast irregular motions as well as shot
boundaries. Additionally, dense trajectories cover the mo-
tion information in videos well.

We, also, investigate how to design descriptors to encode
the trajectory information. We introduce a novel descriptor
based on motion boundary histograms, which is robust to
camera motion. This descriptor consistently outperforms
other state-of-the-art descriptors, in particular in uncon-
trolled realistic videos. We evaluate our video description
in the context of action classi�cation with a bag-of-features
approach. Experimental results show a signi�cant improve-
ment over the state of the art on four datasets of varying
dif�culty, i.e. KTH, YouTube, Hollywood2 and UCF sports.

1. Introduction

Local features are a popular way for representing videos.
They achieve state-of-the-art results for action classi�cation
when combined with a bag-of-features representation. Re-
cently, interest point detectors and local descriptors have
been extended from images to videos. Laptev and Linde-
berg [13] introduced space-time interest points by extend-
ing the Harris detector. Other interest point detectors in-
clude detectors based on Gabor �lters [1, 5] or on the de-
terminant of the spatio-temporal Hessian matrix [33]. Fea-
ture descriptors range from higher order derivatives (local
jets), gradient information, optical �ow, and brightness in-
formation [5, 14, 24] to spatio-temporal extensions of image

KLT Dense trajectories
Figure 1. A comparison of the KLT tracker and dense trajectories.
Red dots indicate the point positions in the current frame. Dense
trajectories are more robust to irregular abrupt motions, in partic-
ular at shot boundaries (second row), and capture more accurately
complex motion patterns.

descriptors, such as 3D-SIFT [25], HOG3D [11], extended
SURF [33], or Local Trinary Patterns [34].

However, the 2D space domain and 1D time domain in
videos have very different characteristics. It is, therefore,
intuitive to handle them in a different manner than via in-
terest point detection in a joint 3D space. Tracking interest
points through video sequences is a straightforward choice.
Some recent methods [20, 21, 27] show impressive results
for action recognition by leveraging the motion information
of trajectories. Messinget al. [21] extracted feature trajecto-
ries by tracking Harris3D interest points [13] with the KLT
tracker [18]. Trajectories are represented as sequences of
log-polar quantized velocities. Matikainenet al. [20] used
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Figure 2. Illustration of our dense trajectory description. Left: Feature points are sampled densely for multiple spatial scales. Middle:
Tracking is performed in the corresponding spatial scale overL frames. Right: Trajectory descriptors are based on its shape represented by
relative point coordinates as well as appearance and motion information over a local neighborhood ofN � N pixels along the trajectory.
In order to capture the structure information, the trajectory neighborhood is divided into a spatio-temporal grid of sizen � � n � � n � .

a standard KLT tracker. Trajectories in a video are clus-
tered, and an af�ne transformation matrix is computed for
each cluster center. The elements of the matrix are used to
represent the trajectories. Sunet al. [27] extracted trajecto-
ries by matching SIFT descriptors between two consecutive
frames. They imposed a unique-match constraint among the
descriptors and discarded matches that are too far apart.

Dense sampling has shown to improve results over
sparse interest points for image classi�cation [7, 22]. The
same has been observed for action recognition in a recent
evaluation by Wanget al. [32], where dense sampling at reg-
ular positions in space and time outperforms state-of-the-art
space-time interest point detectors. In contrast, trajectories
are often obtained by the KLT tracker, which is designed to
track sparse interest points [18]. Matching dense SIFT de-
scriptors is computationally very expensive [15] and, thus,
infeasible for large video datasets.

In this paper, we propose an ef�cient way to extract
dense trajectories. The trajectories are obtained by tracking
densely sampled points using optical �ow �elds. The num-
ber of tracked points can be scaled up easily, as dense �ow
�elds are already computed. Furthermore, global smooth-
ness constraints are imposed among the points in dense opti-
cal �ow �elds, which results in more robust trajectories than
tracking or matching points separately, see Figure 1. Dense
trajectories have not been employed previously for action
recognition. Sundaramet al. [28] accelerated dense trajec-
tories computation on a GPU. Broxet al. [2] segmented ob-
jects by clustering dense trajectories. A similar approach is
used in [17] for video object extraction.

Motion is the most informative cue for action recogni-
tion. It can be due to the action of interest, but also be
caused by background or the camera motion. This is in-
evitable when dealing with realistic actions in uncontrolled
settings. How to separate action motion from irrelevant mo-
tion is still an open problem. Ikizler-Cinbiset al. [9] applied
video stabilization via a motion compensation procedure,
where most camera motion is removed. Uemuraet al. [30]

segmented feature tracks to separate the motion character-
izing the actions from the dominant camera motion.

To overcome the problem of camera motion, we intro-
duce a local descriptor that focuses on foreground motion.
Our descriptor extends the motion coding scheme based
on motion boundaries developed in the context of human
detection [4] to dense trajectories. We show that motion
boundaries encoded along the trajectories signi�cantly out-
perform state-of-the-art descriptors.

This paper is organized as follows. In section 2, we in-
troduce the approach for extracting dense trajectories. We,
then, show how to encode feature descriptors along the tra-
jectories in section 3. Finally, we present the experimental
setup and discuss the results in sections 4 and 5 respectively.
The code to compute dense trajectories and their description
is available online1.

2. Dense trajectories

Dense trajectories are extracted for multiple spatial
scales, see Figure 2. Feature points are sampled on a grid
spaced byW pixels and tracked in each scale separately.
Experimentally, we observed that a sampling step size of
W = 5 is dense enough to give good results. We used
8 spatial scales spaced by a factor of1=

p
2. Each point

Pt = ( x t ; yt ) at framet is tracked to the next framet +1 by
median �ltering in a dense optical �ow �eld! = ( ut ; vt ).

Pt +1 = ( x t +1 ; yt +1 ) = ( x t ; yt ) + ( M � ! )j(�x t ; �y t ) ; (1)

whereM is the median �ltering kernel, and(�x t ; �yt ) is the
rounded position of(x t ; yt ). This is more robust than bi-
linear interpolation used in [28], especially for points near
motion boundaries. Once the dense optical �ow �eld is
computed, points can be tracked very densely without ad-
ditional cost. Points of subsequent frames are concatenated
to form a trajectory:(Pt ; Pt +1 ; Pt +2 ; : : :). To extract dense

1http://lear.inrialpes.fr/software
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Figure 3. Illustration of the information captured by HOG, HOF, and MBH descriptors. For each image, gradient/�ow orientation is
indicated by color (hue) and magnitude by saturation. Motion boundaries are computed as gradients of the x and y optical �ow components
separately. Compared to optical �ow, motion boundaries suppress most camera motion in the background and highlight the foreground
motion. Unlike gradient information, motion boundaries eliminate most texture information from the static background.

optical �ow, we use the algorithm by F̈arneback [6] as im-
plemented in the OpenCV library2. We found this algorithm
to be a good compromise between accuracy and speed.

A common problem in tracking is drifting. Trajectories
tend to drift from their initial location during tracking. To
avoid this problem, we limit the length of a trajectory toL
frames. As soon as a trajectory exceeds lengthL , it is re-
moved from the tracking process, see Figure 2 (middle). To
assure a dense coverage of the video, we verify the presence
of a track on our dense grid in every frame. If no tracked
point is found in aW � W neighborhood, this feature point
is sampled and added to the tracking process. Experimen-
tally, we chose a trajectory length ofL = 15 frames.

In homogeneous image areas without any structure, it is
impossible to track points. Here, we use the same criterion
as Shi and Tomasi [26]. When a feature point is sampled,
we check the smaller eigenvalue of its autocorrelation ma-
trix. If it is below a threshold, this point will not be included
in the tracking process. Since for action recognition we are
mainly interested in dynamic information, static trajectories
are pruned in a pre-processing stage. Trajectories with sud-
den large displacements, most likely to be erroneous, are
also removed. Figure 1 compares dense and KLT trajecto-
ries. We can observe that dense trajectories are more robust
and denser than the trajectories obtained by the KLT tracker.

The shape of a trajectory encodes local motion patterns.
Given a trajectory of lengthL , we describe its shape by a
sequenceS = (� Pt ; : : : ; � Pt + L � 1) of displacement vec-
tors � Pt = ( Pt +1 � Pt ) = ( x t +1 � x t ; yt +1 � yt ). The
resulting vector is normalized by the sum of the magnitudes

2http://opencv.willowgarage.com/wiki/

of the displacement vectors:

S0 =
(� Pt ; : : : ; � Pt + L � 1)

P t + L � 1
j = t jj � Pj jj

: (2)

We refer to this vector by trajectory descriptor. We have
also evaluated representing trajectories at multiple temporal
scales, in order to recognize actions with different speeds.
However, this did not improve the results in practice. There-
fore, we use trajectories with a �xed lengthL in our exper-
iments.

3. Trajectory-aligned descriptors

Local descriptors computed in a 3D video volume
around interest points have become a popular way for video
representation [5, 11, 14, 25, 33]. To leverage the motion
information in our dense trajectories, we compute descrip-
tors within a space-time volume around the trajectory, see
Figure 2 (right). The size of the volume isN � N pixels and
L frames. To embed structure information in the represen-
tation, the volume is subdivided into a spatio-temporal grid
of sizen� � n� � n� . The default parameters for our exper-
iments areN = 32; n� = 2 ; n� = 3 , which has shown to
be optimal based on cross validation on the training set of
the Hollywood2. We give results using different parameter
settings in section 5.3.

Among the existing descriptors for action recognition,
HOGHOF [14] has shown to give excellent results on a va-
riety of datasets [32]. HOG (histograms of oriented gradi-
ents) [3] focuses on static appearance information, whereas
HOF (histograms of optical �ow) captures the local motion
information. We compute HOGHOF along our dense trajec-
tories. For both HOG and HOF, orientations are quantized
into 8 bins using full orientations, with an additional zero
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Walking Jogging Running Boxing Waving Clapping

Biking Shooting Spiking Swinging Walking dog

AnswerPhone GetOutCar HandShake HugPerson Kiss

Diving Kicking Walking Skateboarding High-Bar-Swinging
Figure 4. Sample frames from video sequences of KTH (�rst row), YouTube (second row), Hollywood2 (third row) and UCF sports (last
row) action datasets.

bin for HOF (i.e., in total 9 bins). Both descriptors are nor-
malized with theirL 2 norm. Figure 3 shows a visualization
of HOGHOF.

Optical �ow computes the absolute motion, which in-
evitably includes camera motion [9]. Dalalet al. [4] pro-
posed the MBH (motion boundary histogram) descriptor
for human detection, where derivatives are computed sep-
arately for the horizontal and vertical components of the
optical �ow. This descriptor encodes the relative motion
between pixels, as shown in Figure 3. Here we use MBH to
describe our dense trajectories.

The MBH descriptor separates the optical �ow �eld
I ! = ( I x ; I y ) into its x andy component. Spatial deriva-
tives are computed for each of them and orientation infor-
mation is quantized into histograms, similarly to the HOG
descriptor. We obtain an 8-bin histogram for each com-
ponent, and normalize them separately with theL 2 norm.
Since MBH represents the gradient of the optical �ow, con-
stant motion information is suppressed and only informa-
tion about changes in the �ow �eld (i.e., motion boundaries)
is kept. Compared to video stabilization [9] and motion
compensation [30], this is a simple way to eliminate noise
due to background motion. This descriptor yields excel-
lent results when combined with our dense trajectories. For
instance, on the YouTube dataset [16], MBH signi�cantly
outperforms HOF, see section 5.

For both HOF and MBH descriptors, we reuse the dense
optical �ow that is already computed to extract dense tra-
jectories. This makes our feature computation process very
ef�cient.

4. Experimental setup

In this section, we �rst describe the datasets used for
action recognition. We, then, brie�y present the bag-of-
features model used for evaluating our dense trajectory fea-
tures as well as the KTL tracking baseline.

4.1. Datasets

Our dense trajectories are extensively evaluated on four
standard action datasets: KTH, YouTube, Hollywood2, and
UCF sports, see Figure 4. These datasets are very di-
verse. The KTH dataset views actions in front of a uniform
background, whereas the Hollywood2 dataset contains real
movies with signi�cant background clutter. The YouTube
videos are low quality, whereas UCF sport videos are high
resolution.

The KTH dataset [24]3 consists of six human action
classes: walking, jogging, running, boxing, waving and
clapping. Each action is performed several times by 25 sub-
jects. The sequences were recorded in four different scenar-
ios: outdoors, outdoors with scale variation, outdoors with
different clothes and indoors. The background is homoge-
neous and static in most sequences. In total, the data con-
sists of 2391 video samples. We follow the original experi-
mental setup of the authors,e.g., divide the samples into test
set (9 subjects: 2, 3, 5, 6, 7, 8, 9, 10, and 22) and training set
(the remaining 16 subjects). As in the initial paper [24], we
train and evaluate a multi-class classi�er and report average
accuracy over all classes as performance measure.

3http://www.nada.kth.se/cvap/actions/
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The YouTube dataset [16]4 contains 11 action cate-
gories: basketball shooting, biking/cycling, diving, golf
swinging, horse back riding, soccer juggling, swinging, ten-
nis swinging, trampoline jumping, volleyball spiking, and
walking with a dog. This dataset is challenging due to large
variations in camera motion, object appearance and pose,
object scale, viewpoint, cluttered background and illumi-
nation conditions. The dataset contains a total of 1168 se-
quences. We follow the original setup [16] using leave one
out cross validation for a pre-de�ned set of 25 folds. Av-
erage accuracy over all classes is reported as performance
measure.

The Hollywood2 dataset [19]5 has been collected from
69 different Hollywood movies. There are 12 action classes:
answering the phone, driving car, eating, �ghting, getting
out of car, hand shaking, hugging, kissing, running, sitting
down, sitting up, and standing up. In our experiments, we
used the clean training dataset. In total, there are 1707 ac-
tion samples divided into a training set (823 sequences) and
a test set (884 sequences). Train and test sequences come
from different movies. The performance is evaluated by
computing the average precision (AP) for each of the action
classes and reporting the mean AP over all classes (mAP)
as in [19].

The UCF sport dataset [23]6 contains ten human ac-
tions: swinging (on the pommel horse and on the �oor),
diving, kicking (a ball), weight-lifting, horse-riding, run-
ning, skateboarding, swinging (at the high bar), golf swing-
ing and walking. The dataset consists of 150 video samples
which show a large intra-class variability. To increase the
amount of data samples, we extend the dataset by adding a
horizontally �ipped version of each sequence to the dataset.
Similar to the KTH actions dataset, we train a multi-class
classi�er and report the average accuracy over all classes.
We use a leave-one-out setup and test on each original se-
quence while training on all other sequences together with
their �ipped versions (i.e., the �ipped version of the tested
sequence is removed from the training set).

4.2. Bag of features

To evaluate the performance of our dense trajectories, we
use a standard bag-of-features approach. We �rst construct
a codebook for each descriptor (trajectory, HOG, HOF,
MBH) separately. We �x the number of visual words per de-
scriptor to 4000 which has shown to empirically give good
results for a wide range of datasets. To limit the complexity,
we cluster a subset of 100,000 randomly selected training
features usingk-means. To increase precision, we initialize
k-means 8 times and keep the result with the lowest error.

4http://www.cs.ucf.edu/ ˜ liujg/YouTube\_Action\
_dataset.html

5http://lear.inrialpes.fr/data
6http://www.cs.ucf.edu/vision/public_html/

Descriptors are assigned to their closest vocabulary word
using Euclidean distance. The resulting histograms of vi-
sual word occurrences are used as video descriptors.

For classi�cation we use a non-linear SVM with a� 2-
kernel [14]. Different descriptors are combined in a multi-
channel approach as in [31]:

K (x i ; x j ) = exp(�
X

c

1
Ac D(xc

i ; xc
j )) ; (3)

whereD(xc
i ; xc

j ) is the � 2 distance between videox i and
x j with respect to thec-th channel.Ac is the mean value
of � 2 distances between the training samples for thec-th
channel [36]. In the case of multi-class classi�cation, we
use aone-against-restapproach and select the class with
the highest score.

4.3. Baseline KLT trajectories

To compare our dense trajectories with the standard KLT
tracker [18], we use the implementation of the KLT tracker
from OpenCV. In each frame100 interest points are de-
tected, and added to the tracker, which is somewhat denser
than space-time interest points [32]. Interest points are
tracked through the video forL frames. This is identical to
the procedure used for our dense trajectories. We also use
the same descriptors for the KLT trajectories,e.g. the trajec-
tory shape is represented by normalized relative point co-
ordinates, and HOG, HOF, MBH descriptors are extracted
around the trajectories.

5. Experimental results

In this section, we evaluate the performance of our de-
scription and compare to state-of-the-art methods. We also
determine the in�uence of different parameter settings.

5.1. Evaluation of our dense trajectory descriptors

In this section we compare dense and KLT trajectories
as well as the different descriptors. We use our default pa-
rameters for this comparison. To compute the descriptors,
we setN = 32; n� = 2 ; n� = 3 for both baseline KLT and
dense trajectories. We �x the trajectory length toL = 15,
and the dense sampling step size toW = 5 .

Results for the four datasets are presented in Table 1.
Overall, our dense trajectories outperform the KLT trajec-
tories by2% to 6%. Since the descriptors are identical, this
demonstrates that our dense trajectories describe the video
structures more accurately.

Trajectory descriptors, which only describe the motion
of the trajectories, give surprisingly good results by them-
selves,e.g. 90:2% on KTH and47:7% on Hollywood2 for
dense trajectories. This con�rms the importance of mo-
tion information contained in the local trajectory patterns.
We report only67:2% on YouTube because the trajectory
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KTH YouTube Hollywood2 UCF sports
KLT Dense trajectories KLT Dense trajectories KLT Dense trajectories KLT Dense trajectories

Trajectory 88.4% 90.2% 58.2% 67.2% 46.2% 47.7% 72.8% 75.2%
HOG 84.0% 86.5% 71.0% 74.5% 41.0% 41.5% 80.2% 83.8%
HOF 92.4% 93.2% 64.1% 72.8% 48.4% 50.8% 72.7% 77.6%
MBH 93.4% 95.0% 72.9% 83.9% 48.6% 54.2% 78.4% 84.8%
Combined 93.4% 94.2% 79.9% 84.2% 54.6% 58.3% 82.1% 88.2%

Table 1. Comparison of KLT and dense trajectories as well as different descriptors on KTH, YouTube, Hollywood2 and UCF sports. We
report average accuracy over all classes for KTH, YouTube and UCF sports and mean AP over all classes for Hollywood2.

KTH YouTube Hollywood2 UCF sports

Laptevet al. [14] 91.8% Liu et al. [16] 71.2% Wanget al. [32] 47.7% Wanget al. [32] 85.6%
Yuanet al. [35] 93.3% Ikizler-Cinbiset al. [9] 75.21% Gilbert et al. [8] 50.9% Kovashkaet al. [12] 87.27%
Gilbert et al. [8] 94.5% Ullah et al. [31] 53.2% Kl äseret al. [10] 86.7%

Kovashkaet al. [12] 94.53% Tayloret al. [29] 46.6%
Our method 94.2% Our method 84.2% Our method 58.3% Our method 88.2%

Table 2. Comparison of our dense trajectories characterized by our combined descriptor (Trajectory+HOG+HOF+MBH) with state-of-the-
art methods in the literature.

descriptors capture lots of motions from camera. Gener-
ally, HOF outperforms HOG as motion is more discrimi-
native than static appearance for action recognition. How-
ever, HOG gets better results both on YouTube and UCF
sports. The HOF descriptors computed on YouTube videos
are heavily polluted by camera motions, since many videos
are collected by hand-held cameras. Static scene context is
very important for UCF sports actions which often involve
speci�c equipment and scene types. MBH consistently out-
performs the other descriptors on all four datasets. The im-
provement is most signi�cant on the uncontrolled realistic
datasets YouTube and Hollywood2. For instance, MBH is
11:1% better than HOF on YouTube. This con�rms the ad-
vantage of suppressing background motion when dealing
with optical �ow.

5.2. Comparison to the state of the art
Table 2 compares our results to state of the art. On KTH,

we obtain94:2% which is comparable to the state of the
art, i.e.,94:53%[12]. Note that on this dataset several au-
thors use a leave-one-out cross-validation setting. Here, we
only compare to those using the standard setting [24]. Inter-
estingly, MBH alone obtains a slightly better performance
on KTH, i.e., 95:0%, than combining all the descriptors
together. Ullahet al. [31] also found that a combination
of descriptors performed worse than a subset of them. On
YouTube, we signi�cantly outperform the current state-of-
the-art method [9] by9%, where video stabilization is used
to remove camera motion. We report58:3%on Hollywood2
which is an improvement of5% over [31]. Note that Ullah
et al. [31] achieved better results by using additional images
collected from Internet. The difference between all methods
is rather small on UCF sports, which is largely due to the
leave-one-out setting,e.g. 149 videos are used for training
and only one for testing. Nevertheless, we outperform the
state of the art [12] by1%.

We also compare the results per action class for YouTube

and Hollywood2. On YouTube, our dense trajectories give
best results for 8 out of 11 action classes when compare
with the KLT baseline and the approach of [9], see Table 3.
On Hollywood2, we compare the AP of each action class
with the KLT baseline and the approach of [31], i.e., a com-
bination of 24 spatio-temporal grids, see Table 4. Our dense
trajectories yield best results for 8 out of 12 action classes.

KLT Dense trajectories Ikizler-Cinbis [9]

b shoot 34.0% 43.0% 48.48%
bike 87.6% 91.7% 75.17%
dive 99.0% 99.0% 95.0%
golf 95.0% 97.0% 95.0%

h ride 76.0% 85.0% 73.0%
s juggle 65.0% 76.0% 53.0%
swing 86.0% 88.0% 66.0%

t swing 71.0% 71.0% 77.0%
t jump 93.0% 94.0% 93.0%
v spike 96.0% 95.0% 85.0%
walk 76.4% 87.0% 66.67%

Accuracy 79.9% 84.2% 75.21%
Table 3. Accuracy per action class for the YouTube dataset. We
compare with the results reported in [9].

KLT Dense trajectories Ullah [31]

AnswerPhone 18.3% 32.6% 25.9%
DriveCar 88.8% 88.0% 85.9%

Eat 73.4% 65.2% 56.4%
FightPerson 74.2% 81.4% 74.9%
GetOutCar 47.9% 52.7% 44.0%
HandShake 18.4% 29.6% 29.7%
HugPerson 42.6% 54.2% 46.1%

Kiss 65.0% 65.8% 55.0%
Run 76.3% 82.1% 69.4%

SitDown 59.0% 62.5% 58.9%
SitUp 27.7% 20.0% 18.4%

StandUp 63.4% 65.2% 57.4%
mAP 54.6 58.3% 51.8%

Table 4. Average precision per action class for the Hollywood2
dataset. We compare with the results reported in [31].
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Figure 5. Results for different parameter settings on the Hollywood2 and YouTube datasets.

5.3. Evaluation of trajectory parameters

To evaluate the different parameter settings for dense tra-
jectories, we report results on YouTube and Hollywood2, as
they are larger and more challenging than the other two. We
study the impact of the trajectory length, sampling step size,
neighborhood size and cell grid structure. We evaluate the
performance for a parameter at the time. The other param-
eters are �xed to the default values, i.e., trajectory length
L = 15, sampling step sizeW = 5 , neighborhood size
N = 32 and cell grid structuren� = 2 ; n� = 3 .

Figure 5 (top, left) evaluates the impact of the trajectory
lengthL . For both datasets an increase of lengthL improves
performance up to a certain point (L=15 or 20), and then
decreases slightly, since longer trajectories have a higher
chance to drift from the initial position. We achieve the best
results with a trajectory length of15or 20 frames.

With respect to the sampling step sizeW , Figure 5 (top,
right) shows that dense sampling improves the results as the
step size decreases. This is consistent with dense sampling
at regular positions [32], where more features in general im-
prove the results. We report58:9%(58:3%) on Hollywood2
and84:4%(84:2%) on YouTube for a step size of2 (5) pix-

els. A sampling step of2 pixels is extremely dense, i.e.,
every other pixel is sampled, and does not justify the minor
gain obtained.

The results are relatively stable with regard to the neigh-
borhood sizeN , see Figure 5 (bottom left). On Holly-
wood2, results are almost the same whenN changes from
24 pixels to 48 pixels. The best result on YouTube is84:7%
with a neighborhood size of40 pixels. Dividing the video
volume into cells improves the results on both Hollywood2
and YouTube. In particular, the performance increases sig-
ni�cantly when the spatial cell gridn� is increased from 1
to 2, see Figure 5 (bottom right). However, further increas-
ing the number of cells, i.e., beyondn� = 2 ; n� = 3 , does
not improve the results.

6. Conclusions

This paper has introduced an approach to model videos
by combining dense sampling with feature tracking. Our
dense trajectories are more robust than previous video de-
scriptions. They capture the motion information in the
videos ef�ciently and show improved performance over
state-of-the-art approaches for action classi�cation. We
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have also introduced an ef�cient solution to remove camera
motion by computing motion boundaries descriptors along
the dense trajectories. This successfully segments the rele-
vant motion from background motion, and outperforms pre-
vious video stabilization methods. Our descriptors combine
trajectory shape, appearance, and motion information. Such
a representation has shown to be ef�cient for action classi�-
cation, but could also be used in other areas, such as action
localization and video retrieval.
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