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Abstract

We consider a class of learning problems regularized byuetstred sparsity-inducing norm de-
fined as the sum ofy- or £,-norms over groups of variables. Whereas much effort has pat

in developing fast optimization techniques when the granesdisjoint or embedded in a hierar-
chy, we address here the case of general overlapping gréaphis end, we present two different
strategies: On the one hand, we show that the proximal apesasociated with a sum df.-
norms can be computed exactly in polynomial time by solvimgiadratic min-cost flow problem
allowing the use of accelerated proximal gradient meth@s.the other hand, we use proximal
splitting techniques, and address an equivalent fornaratiith non-overlapping groups, but in
higher dimension and with additional constraints. We pgeapefficient and scalable algorithms
exploiting these two strategies, which are significantgtdathan alternative approaches. We illus-
trate these methods with several problems such as CUR nifattiorization, multi-task learning
of tree-structured dictionaries, background subtradtiovideo sequences, image denoising with
wavelets, and topographic dictionary learning of naturadge patches.

Keywords: Convex optimization, proximal methods, sparse codingicstired sparsity, matrix
factorization, network flow optimization, alternatingelition method of multipliers.

1. Introduction

Sparse linear models have become a popular framework ftingewith various unsupervised and
supervised tasks in machine learning and signal procesisirsgich models, linear combinations of
small sets of variables are selected to describe the datpldization by the&;-norm has emerged
as a powerful tool for addressing this variable selectiablam, relying on both a well-developed
theory (see Tibshirani, 1996; Chen et al., 1999; Mallat, 9t 9ickel et al., 2009; Wainwright,
2009, and references therein) and efficient algorithma¢ét al., 2004; Nesterov, 2007; Beck and
Teboulle, 2009; Needell and Tropp, 2009; Combettes andue&sz010).

x. These authors contributed equally.
t. When most of this work was conducted, all authors werdatil to INRIA, WILLOW Project-Team.
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The ¢1-norm primarily encourages sparse solutions, regardietisegotential structural rela-
tionships (e.g., spatial, temporal or hierarchical) éxgsbetween the variables. Much effort has
recently been devoted to designing sparsity-inducing leegations capable of encoding higher-
order information about the patterns of non-zero coeffisi€@ehver et al., 2008; Jenatton et al.,
2009; Jacob et al., 2009; Zhao et al., 2009; He and Carin,;2008ng et al., 2009; Baraniuk et al.,
2010; Micchelli et al., 2010), with successful applicaian bioinformatics (Jacob et al., 2009; Kim
and Xing, 2010), topic modeling (Jenatton et al., 2010a,12@hd computer vision (Cehver et al.,
2008; Huang et al., 2009; Jenatton et al., 2010b). By corieglessums of norms of appropriate
subsets, ogroups of variables, these regularizations control the spagsityerns of the solutions.
The underlying optimization is usually difficult, in partdmuse it involves nhonsmooth components.

Ouir first strategy uses proximal gradient methods, whicteh@even to be effective in this
context, essentially because of their fast convergenes eatd their ability to deal with large prob-
lems (Nesterov, 2007; Beck and Teboulle, 2009). They cadlbatifferentiable loss functions with
Lipschitz-continuous gradient, and we show in this papev tm use them with a regularization
term composed of a sum éf-norms. The second strategy we consider exploits proxipldtisg
methods (see Combettes and Pesquet, 2008, 2010; Goldfafglar2009; Tomioka et al., 2011;
Qin and Goldfarb, 2011; Boyd et al., 2011, and reference®itime which builds upon an equivalent
formulation with non-overlapping groups, but in a highemdnsional space and with additional
constraints. More precisely, we make four main contributions:

» We show that thgoroximal operatorassociated with the sum @éf,-norms with overlapping
groups can be computed efficiently and exactly by solviggadratic min-cost floyproblem,
thereby establishing a connection with the network flowrojtation literatureé?. This is the
main contribution of the paper, which allows us to use pra@&tigradient methods in the
context of structured sparsity.

» We prove that the dual norm of the suméfnorms can also be evaluated efficiently, which
enables us to compute duality gaps for the correspondirighizattion problems.

* We present proximal splitting methods for solving struetlsparse regularized problems.

» We demonstrate that our methods are relevant for variopkcations whose practical suc-
cess is made possible by our algorithmic tools and efficimpiémentations. First, we in-
troduce a new CUR matrix factorization technique explgitgiructured sparse regulariza-
tion, built upon the links drawn by Bien et al. (2010) betwg@dR decomposition (Ma-
honey and Drineas, 2009) and sparse regularization. Theiljustrate our algorithms with
different tasks: video background subtraction, estinmatib hierarchical structures for dic-
tionary learning of natural image patches (Jenatton ef@llpa, 2011), wavelet image de-

1. The idea of using this class of algorithms for solving cinued sparse problems was first suggested to us by Jean-
Christophe Pesquet and Patrick-Louis Combettes. It wassaiggested to us later by Ryota Tomioka, who briefly
mentioned this possibility in (Tomioka et al., 2011). It adso briefly be found in (Boyd et al., 2011), and in details
in the work of Qin and Goldfarb (2011) which was conductedh&sstame time as ours. It was also used in a related
context by Sprechmann et al. (2010) for solving optimizapiooblems with hierarchical norms.

2. Interestingly, this is not the first time that network floptionization tools have been used to solve sparse regutbrize
problems with proximal methods. Such a connection was thcestablished by Chambolle and Darbon (2009) in
the context of total variation regularization, and siniifdsy Hoefling (2010) for the fused Lasso. One can also find
the use of maximum flow problems for non-convex penaltiehéwork of Cehver et al. (2008) which combines
Markov random fields and sparsity.
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noising with a structured sparse prior, and topographitiatiary learning of natural image
patches (Hyvarinen et al., 2001; Kavukcuoglu et al., 2@é&rigues and Olshausen, 2010).

Note that this paper extends a shorter version publishedifAces in Neural Information Process-
ing Systems (Mairal et al., 2010b), by adding new experisié@tJR matrix factorization, wavelet

image denoising and topographic dictionary learning)s@néing the proximal splitting methods,
providing the full proofs of the optimization results, ardtliang numerous discussions.

1.1 Notation

Vectors are denoted by bold lower case letters and matricapfiier case ones. We define pp 1
the fq-norm of a vectox in R™ as||x||q £ (3™, |xi|)Y/9, wherex; denotes thé-th coordinate ok,
and [|X|| = maX—1,_.mXi| = Mg« [|X|lq- We also define thé;-pseudo-norm as the number of
nonzero elements in a vectdrix|lo £ #{i s.t. x;j # 0} = limg_,0- (T, |Xi|%). We consider the
Frobenius norm of a matriX in R™": ||X||c £ (3", 57, X?)Y/2, whereX;; denotes the entry
of X at rowi and columnj. Finally, for a scalar, we denote(y), = max(y,0). For an integer
p > 0, we denote by 3P} the powerset composed of thé Qubsets of1,..., p}.

The rest of this paper is organized as follows: Section 2qmissstructured sparse models
and related work. Section 3 is devoted to proximal gradiégdrahms, and Section 4 to proxi-
mal splitting methods. Section 5 presents several expeatsrend applications demonstrating the
effectiveness of our approach and Section 6 concludes fher.pa

2. Structured Sparse Models

We are interested in machine learning problems where thaicolis not only known beforehand
to be sparse—that is, the solution has only a few non-zerfficeats, but also to form non-zero
patterns with a specific structure. It is indeed possiblenttode additional knowledge in the regu-
larization other than just sparsity. For instance, one matwhe non-zero patterns to be structured
in the form of non-overlapping groups (Turlach et al., 20@6an and Lin, 2006; Stojnic et al.,
2009; Obozinski et al., 2010), in a tree (Zhao et al., 200&hHBa009; Jenatton et al., 2010a, 2011),
or in overlapping groups (Jenatton et al., 2009; Jacob g2@09; Huang et al., 2009; Baraniuk
et al., 2010; Cehver et al., 2008; He and Carin, 2009), wiid¢hea setting we are interested in here.

As for classical non-structured sparse models, there aiedily two lines of research, that
either (A) deal with nonconvex and combinatorial formwas that are in general computationally
intractable and addressed with greedy algorithms or (Breomate on convex relaxations solved
with convex programming methods.

2.1 Nonconvex Approaches

A first approach introduced by Baraniuk et al. (2010) cosdisimposing that the sparsity pattern
of a solution (i.e., its set of non-zero coefficients) is inradefined subset of groups of variables
G C 2{1--P}_ Given this a priori knowledge, a greedy algorithm (Needalil Tropp, 2009) is used

3. Note that it would be more proper to wrife||J instead off|x||o to be consistent with the traditional notatif]|g.
However, for the sake of simplicity, we will keep this notatiunchanged in the rest of the paper.
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to address the following nonconvex structured sparse deasition problem
1
min =|ly — Xw||3 s.t. Suppw) € 6 and ||w|o <,
weRP 2

wheresis a specified sparsity level (number of nonzeros coeffisjenin R™ is an observed signal,
X is a design matrix iR™ P and Supfw) is the support ofv (set of non-zero entries).

In a different approach motivated by the minimum descriptength principle (see Barron et al.,
1998), Huang et al. (2009) consider a collection of grogips 21} and define a “coding length”

Using this tool, they propose a regularization function®P:— R such that for a vectow in RP,
cl(w) represents the number of bits that are used for encadinghe corresponding optimization
problem is also addressed with a greedy procedure:

1
min =|ly — Xw||2 s.t. clw)<s
Weszuy HZ K )— )

Intuitively, this formulation encourages solutiomswhose sparsity patterns have a small coding
length, meaning in practice that they can be representedusyom of a small number of groups.
Even though they are related, this model is different fromdhe of Baraniuk et al. (2010).

These two approaches are encoding a priori knowledge orhtiesof non-zero patterns that
the solution of a regularized problem should have. A difiémoint of view consists of modelling
the zero patterns of the solution—that is, define groups oébkes that should be encouraged to
be set to zero together. After defining a ge€ 2{%P} of such groups of variables, the following
penalty can naturally be used as a regularization to indueedsired property

P(w) 2 Y ngd(w), with 8(w) £ (1)

geg

1 if there existsj € g such thatwv; # 0,
0 otherwise

where theng's are positive weights. This penalty was considered by §a6#h0), who showed that
the convex envelope of such nonconvex functions (more geBcstrictly positive, non-increasing
submodular functions of Supy), see Fujishige, 2005) when restricted on the dgiball, are in
fact types of structured sparsity-inducing norms whichtheetopic of the next section.

2.2 Convex Approaches with Sparsity-Inducing Norms

In this paper, we are interested in convex regularizatiohghlvinduce structured sparsity. Gener-
ally, we consider the following optimization problem

min f(w)+AQ(w), 2

WERP

wheref : RP — R is a convex function (usually an empirical risk in machinerfeng and a data-
fitting term in signal processing), af2l: RP — R is a structured sparsity-inducing norm, defined as

Q(w) £ 3 nglwgll 3)
geg

of w indexed byg in g, the scalars)y are positive weights, anl|| denotes thé,- or £»-norm. We
now consider different cases:
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« Wheng is the set of singletons—that is = {{1},{2},...,{p}}, and all thenq are equal to
one,Q is the/;-norm, which is well known to induce sparsity. This leadsifmtance to the
Lasso (Tibshirani, 1996) or equivalently to basis pursGhén et al., 1999).

* If g is a partition of{1,..., p}, i.e. the groups do not overlap, variables are selectecbiny
rather than individually. When the coefficients of the siolutare known to be organized in
such a way, explicitly encoding the a priori group structinréne regularization can improve
the prediction performance and/or interpretability of lderned models (Turlach et al., 2005;
Yuan and Lin, 2006; Roth and Fischer, 2008; Stojnic et al092tuang and Zhang, 2010;
Obozinski et al., 2010). Such a penalty is commonly calledigfLasso penalty.

» When the groups overlag is still a norm and sets groups of variables to zero together (
natton et al., 2009). The latter setting has first been cernsitifor hierarchies (Zhao et al.,
2009; Kim and Xing, 2010; Bach, 2009; Jenatton et al., 20204]), and then extended to
general group structures (Jenatton et al., 2009). SolvingZ} in this context is a challenging
problem which is the topic of this paper.

Note that other types of structured-sparsity inducing reohave also been introduced, notably the
approach of Jacob et al. (2009), which penalizes the fofgwguantity

Qw) = min 5 ngl€¥ stw= 3 & and Vg, SuprE’) C g.
geg

E=(&%)geq ERPXIG g

This penalty, which is also a norm, can be seen as a convexatiela of the regularization intro-
duced by Huang et al. (2009), and encourages the sparsigrmpaft the solution to be a union of a
small number of groups. Even though b@handQ’ appear under the terminology of “structured
sparsity with overlapping groups”, they have in fact siguifitly different purposes and algorith-
mic treatments. For example, Jacob et al. (2009) considgpribblem of selecting genes in a gene
network which can be represented as the union of a few predefiathways in the graph (groups
of genes), which overlap. In this case, it is natural to ugenbrmQ’ instead ofQ. On the other
hand, we present a matrix factorization task in Sectionsti&re the set of zero-patterns should be
a union of groups, naturally leading to the usebfDealing withQ’ is therefore relevant, but out
of the scope of this paper.

2.3 Convex Optimization Methods Proposed in the Literature

Generic approaches to solve Eq. (2) mostly rely on subgnadiescent schemes (see Bertsekas,
1999), and interior-point methods (Boyd and Vandenbergi®®4). These generic tools do not
scale well to large problems and/or do not naturally hanpéersity (the solutions they return may
have small values but no “true” zeros). These two points jptdime need for dedicated methods.
To the best of our knowledge, only a few recent papers haveeasield problem Eq. (2) with
dedicated optimization procedures, and in fact, only wRés a linear combination of,-norms. In
this setting, a first line of work deals with the non-smoogmefQ by expressing the norm as the
minimum over a set of smooth functions. At the cost of addiey mariables (to describe the set of
smooth functions), the problem becomes more amenableitniaption. In particular, reweighted-
¢, schemes consist of approximating the nd2niby successive quadratic upper bounds (Argyriou
et al., 2008; Rakotomamonijy et al., 2008; Jenatton et alQBOMicchelli et al., 2010). Itis possible
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to show for instance that

_ 1 2l\wa 12
Qw)= min ‘—{ NglWallz gH2+zg}.
(2g)geg €R; 2 deg %

Plugging the previous relationship into Eq. (2), the optiation can then be performed by alternat-
ing between the updateswfand the additional variablégy)qe; .* When the nornf is defined as a
linear combination of,-norms, we are not aware of the existence of such variatfonalulations.

Problem (2) has also been addressed with working-set #igwsi(Bach, 2009; Jenatton et al.,
2009; Schmidt and Murphy, 2010). The main idea of these nusth® to solve a sequence of
increasingly larger subproblems of (2). Each subproblensists of an instance of Eq. (2) reduced
to a specific subset of variables known asw@king set As long as some predefined optimality
conditions are not satisfied, the working set is augment#u selected inactive variables (for more
details, see Bach et al., 2011).

The last approach we would like to mention is that of Chen.gRal10), who used a smoothing
technique introduced by Nesterov (2005). A smooth appratimm Q, of Q is used, wherQ is
a sum off>-norms, andu is a parameter controlling the trade-off between smoothés), and
quality of the approximation. Then, Eq. (2) is solved witltelerated gradient techniques (Beck
and Teboulle, 2009; Nesterov, 2007) Il is substituted to the regularizatidd. Depending on
the required precision for solving the original problenistimethod provides a natural choice for
the parametep, with a known convergence rate. A drawback is that it reguice choose the
precision of the optimization beforehand. Moreover, sia¢g-norm is added to the smoothé€y,
the solutions returned by the algorithm might be sparse dsaiply without respecting the structure
encoded byQ. This should be contrasted with other smoothing technigeigs, the reweighted,
scheme we mentioned above, where the solutions are onlgxpately sparse.

3. Optimization with Proximal Gradient Methods

We address in this section the problem of solving Eq. (2) utiteefollowing assumptions:

« f is differentiable with Lipschitz-continuous gradierior machine learning problems, this
hypothesis holds wheh is for example the square, logistic or multi-class logisbiss (see
Shawe-Taylor and Cristianini, 2004).

* Qis asum of,-norms.Even though thé,-norm is sometimes used in the literature (Jenatton
et al., 2009), and is in fact used later in Section 4, &haorm is piecewise linear, and we
take advantage of this property in this work.

To the best of our knowledge, no dedicated optimization oektias been developed for this setting.
Following Jenatton et al. (2010a, 2011) who tackled thei@dar case of hierarchical norms, we
propose to use proximal gradient methods, which we nowdnire.

4. Note that such a scheme is interesting only if the optitigmawith respect tav is simple, which is typically the case
with the square loss function (Bach et al., 2011). Moredeerthis alternating scheme to be provably convergent, the
variables(zg)ges have to be bounded away from zero, resulting in solutionssatentries may have small values,
but not “true” zeros.
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3.1 Proximal Gradient Methods

Proximal methods have drawn increasing attention in theasigrocessing (e.g., Wright et al.,
2009b; Combettes and Pesquet, 2010, and numerous referérerein) and the machine learn-
ing communities (e.g., Bach et al., 2011, and referencegithe especially because of their con-
vergence rates (optimal for the class of first-order tean#sy and their ability to deal with large
nonsmooth convex problems (e.g., Nesterov, 2007; Beck ehdulle, 2009).

These methods are iterative procedures that can be seeregteasion of gradient-based tech-
niques when the objective function to minimize has a nondmpart. The simplest version of this
class of methods linearizes at each iteration the functianound the current estimafe and this
estimate is updated as the (unique by strong convexityjisalof theproximalproblem, defined as:

min f(W) 4 (w— &) "Of (W) +AQ(w) + E||W—\7V||%.
weRP 2

The quadratic term keeps the update in a neighborhood wihisrelose to its linear approximation,
andL >0 is a parameter which is a upper bound on the Lipschitz conhefalf. This problem can
be equivalently rewritten as:

A
mln—Hw—EDf WH2+ Q(w),

weRP 2

Solving efficientlyand exactly this problem allows to attain the fast convergenates of proximal
methods, i.e., reaching a precision (ka—"z) in k iterations? In addition, when the nonsmooth
termQ is not present, the previous proximal problem exactly laadhe standard gradient update
rule. More generally, we define tipgoximal operator

Definition 1 (Proximal Operator)
The proximal operator associated with our regularizatiennh AQ, which we denote by Prgy, is
the function that maps a vectare RP to the unique solution of

mln—HU wlj3 +AQ(w). (4)

weRP 2
This operator was initially introduced by Moreau (1962) amgralize the projection operator onto
a convex set. What makes proximal methods appealing to splese decomposition problems is
that this operator can often be computed in closed form. fstance,

* WhenQ is the ¢/1-norm—that isQ(w) = ||w||;— the proximal operator is the well-known
elementwise soft-thresholding operator,

0 if |uj| <A

Viedl,..., uj — sign(u;)(juj| — =< ]

Jed ). U gy (sl =)+ {S|gn(uj)(\uj\ —A) otherwise

» WhenQ is a group-Lasso penalty with-norms—that isQ(u) = ¥4 [|Ug|2, With G being
a partition of{1,..., p}, the proximal problem iseparablein every group, and the solution
is a generalization of the soft-thresholding operator tiugs of variables:

0 if [Jugllz2 <A
VgEe G ,Ug > Ug— T, [Ug] = q juglo-2

lugll2

ug otherwise

5. Note, however, that fast convergence rates can also hevadhwhile solving approximately the proximal prob-
lem (see Schmidt et al., 2011, for more details).
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wherell ,<x denotes the orthogonal projection onto the ball of&sx@orm of radiush.

* WhenQ is a group-Lasso penalty with,-norms—that isQ(u) = ¥ 4c; [|Ugllw, With G being
a partition of{1,..., p}, the solution is a different group-thresholding operator:

Vge G, Ug ug—T,<a[ugl,

whererll |, <) denotes the orthogonal projection onto theball of radiusA, which can be
solved inO(p) operations (Brucker, 1984; Maculan and de Paula, 1989).e MNatt when
luglls <A, we have a group-thresholding effect, with— M, <x[ug] = O.

* WhenQ is a tree-structured sum @é$- or »-norms as introduced by Zhao et al. (2009)—
meaning that two groups are either disjoint or one is indluidehe other, the solution admits
a closed form. Let< be a total order or; such that forg;, gy in ¢, 01 < gz if and only if
eithergs C go or g1 Nge = 0.° Then, ifgs < ... < g|. and if we define Prdkas (a) the
proximal operatotg — Prox,, .| (Ug) on the subspace corresponding to grgugmd (b) the
identity on the orthogonal, Jenatton et al. (2010a, 201dyvsld that:

Proxo = Prox@m o ...oProx, (5)

which can be computed i®(p) operations. It also includes the sparse group Lasso (sum of
group-Lasso penalty and-norm) of Friedman et al. (2010) and Sprechmann et al. (2010)

The first contribution of our paper is to address the caseréige overlapping groups with,-norm.

3.2 Dual of the Proximal Operator

We now show that, for a setg of general overlapping groups, a convex dual of the proximal
problem (4) can be reformulated ag@adratic min-cost flow problenWe then propose an efficient
algorithm to solve it exactly, as well as a related algoritiorcompute the dual norm 61. We start

by considering the dual formulation to problem (4) introeddy Jenatton et al. (2010a, 2011):

Lemma 1 (Dual of the proximal problem, Jenatton et al., 2010a2011)
Givenu in RP, consider the problem

1
min —

omonsl ZHU— > 892 st Vge g, &1 <Ang and g9=0if j¢g, (6)

9c§

whereé = (Eg)geg is in RP¥I91 and Ejg denotes the j-th coordinate of the vec&st Then, every
solution & = (£*9) g, of Eq. (6) satisfiesv* =u—y 4., &9, wherew* is the solution of Eq. (4)
whenQ is a weighted sum df.,-norms.

Without loss of generality,we assume from now on that the scalagsare all non-negative, and
we constrain the entries @fto be so. Such a formulation introducpls | dual variables which
can be much greater thanthe number of primal variables, but it removes the issueveflapping
regularization. We now associate a graph with problem (6)whbich the variable§?, for g in ¢
andj in g, can be interpreted as measuring the components of a flow.

6. For a tree-structured set, such an order exists.

7. Let&* denote a solution of Eq. (6). Optimality conditions of Eq).¢6rived in Jenatton et al. (2010a, 2011) show that
forall jin {1,...,p}, the signs of the non-zero coefficielif? for gin g are the same as the signs of the entugs
To solve Eq. (6), one can therefore flip the signs of the negatiriableaij, then solve the modified dual formulation
(with non-negative variables), which gives the magnitufithe entriei?é (the signs of these being known).

8
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3.3 Graph Model

Let G be a directed grap = (V,E,s,t), whereV is a set of verticesE CV xV a set of arcss

a source, andl a sink. For all arcs i, we define a non-negative capacity constant, and as done
classically in the network flow literature (Ahuja et al., B9Bertsekas, 1998), we defindlaw as a
non-negative function on arcs that satisfies capacity caing on all arcs (the value of the flow on
an arc is less than or equal to the arc capacity) and congenainstraints on all vertices (the sum

of incoming flows at a vertex is equal to the sum of outgoing #lpexcept for the source and the
sink. For every arein E, we also define a real-valued cost function, which dependeewalue of

the flow one. We now introduce theanonicalgraphG associated with our optimization problem:

Definition 2 (Canonical Graph)

Let ¢ C {1,...,p} be a set of groups, anthg)qc; be positive weights. The canonical graph
G = (V,E,st) is the unique graph defined as follows:

1. V=V,UVy, where is a vertex set of size p, one vertex being associated to ealelx i
jin {1,...,p}, and \§ is a vertex set of sizg; |, one vertex per group g ig. We thus
have|V| = |G|+ p. For simplicity, we identify groups g ig and indices jin{1,...,p} with
vertices of the graph, such that one can from now on refer @tbx j” or “vertex g".

2. For every group g irg, E contains an ar¢s,g). These arcs have capacity)g and zero cost.

3. For every group g ing, and every index jin g, E contains an afg, j) with zero cost and
infinite capacity. We denote tﬁ? the flow on this arc.

4. For every index j in{1,...,p}, E contains an arqj,t) with infinite capacity and a cost
3(uj— & )2, whereg; is the flow on(j, t).

Examples of canonical graphs are given in Figures la-c faetisimple group structures. The
flows Ejg associated witls can now be identified with the variables of problem (6). Siweehave
assumed the entries ofto be non-negative, we can now reformulate Eq. (6) as

P 1
min — —
EcRP 19| EcRrp | Z 2

t&=3y & andvgeg, {Zi?gmg and Suppﬁg)gg}.

9G =
()

Indeed,

+ the only arcs with a cost are those leading to the sink, whate the fornyj,t), wherej is
the index of a variable iff1,..., p}. The sum of these costs§3_; 3(uj —&;)?, which is the
objective function minimized in Eq. (7);

« by flow conservation, we necessarily hi_\fe: Yocg E? in the canonical graph;

* the only arcs with a capacity constraints are those comingbthe source, which have the
form (s,g), whereg is a group ing . By flow conservation, the flow on an afg g) is ¥ jq E?
which should be less thamg by capacity constraints;

« all other arcs have the foriig, j), wheregis in g andj is ing. Thus, Supf£?) C g
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Therefore we have shown that finding a flominimizing the sum of the cost® such a graph is
equivalent to solving problem (6). When some groups areuded in others, the canonical graph
can be simplified to yield a graph with a smaller number of ed@pecifically, ifh andg are groups
with h C g, the edgesg, j) for j € hcarrying a rowE? can be removed and replaced by a single edge
(g,h) of infinite capacity and zero cost, carrying the flglyehi?. This simplification is illustrated

in Figure 1d, with a graph equivalent to the one of Figure Tds@oes not change the optimal value
of ? which is the quantity of interest for computing the optimémal variablew*. We present in
Appendix A a formal definition of equivalent graphs. Thesegifications are useful in practice,
since they reduce the number of edges in the graph and imghve\speed of our algorithms.

3.4 Computation of the Proximal Operator

Quadratic min-cost flow problems have been well studied & dperations research literature
(Hochbaum and Hong, 1995). One of the simplest cases, whamntains a single group as in
Figure 1a, is solved by an orthogonal projection on#hall of radiusAng. It has been shown,
both in machine learning (Duchi et al., 2008) and operatiessarch (Hochbaum and Hong, 1995;
Brucker, 1984), that such a projection can be computéd(jp) operations. When the group struc-
ture is a tree as in Figure 1d, strategies developed in thedwonunities are also similar (Jenatton
et al., 2010a; Hochbaum and Hong, 199%)d solve the problem i®(pd) operations, wherd is
the depth of the tree.

The general case of overlapping groups is more difficult. haeim and Hong (1995) have
shown thatquadratic min-cost flow problemsan be reduced to a specifi@arametric max-flow
problem, for which an efficient algorithm exists (Gallo et 4989)? While this generic approach
could be used to solve Eqg. (6), we propose to use Algorithmatldlso exploits the fact that our
graphs have non-zero costs only on edges leading to the Amkhown in Appendix D, it it has
a significantly better performance in practice. This alidponi clearly shares some similarities with
existing approaches in network flow optimization such astimplified version of Gallo et al. (1989)
presented by Babenko and Goldberg (2006) that uses a din@tleanquer strategy. Moreover, an
equivalent algorithm exists for minimizing convex functioover polymatroid sets (Groenevelt,
1991). This equivalence, a priori non trivial, is uncovetbbugh a representation of structured
sparsity-inducing norms via submodular functions, whicswecently proposed by Bach (2010).

The intuition behind our algorithntonput eFl ow (see Algorithm 1), is the following: sinde=
Yocg £9is the only value of interest to compute the solution of trexpmal operatow = u — &, the

first step looks for a candidate valyéor € by solving the following relaxed version of problem (7):

1 )
Z (Ui — V. <
argmln; 2(uJ yj)© st j;uyj _)\ge grng. (8)

YERP 1EVY

The cost function here is the same as in problem (7), but thetnts are weaker: Any feasi-
ble point of problem (7) is also feasible for problem (8). Fiproblem can be solved in linear
time (Brucker, 1984). Its solution, which we denagtdor simplicity, provides the lower bound
|u—Yy||3/2 for the optimal cost of problem (7).

8. Note however that, while Hochbaum and Hong (1995) onlysictar a tree-structured sum &f-norms, the results
from Jenatton et al. (2010a) also apply for a suniefiorms.

9. By definition, a parametric max-flow problem consists iwisg, for every value of a parameter, a max-flow problem
on a graph whose arc capacities depend on this parameter.

10
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O

£9+E3+E3<Ang £8-+E<Ang g} <Ann
g
S & g/ & SN
e
£, 00 &2.C 3,C3 00 2,0 3,C3
® ®
(@) ¢ ={9={1,2.3}}. (b) 6 ={g={1,2},h={2,3}}.

S
E%+ag+zg<AN2<mh a%+zg+ag<mN2<mh

g

©g :{g:{lv 2, S}h:{zs}} (dg ={g={l}U hh={23}}

Figure 1: Graph representation of simple proximal problertis different group structures . The
three indices 12,3 are represented as grey squares, and the gmipim ¢ as red discs. The
source is linked to every grouph with respective maximum capaciiy)g, Ann and zero cost. Each
variableu; is linked to the sink, with an infinite capacity, and with a cast& 3 (u; —Ej )2. All other
arcs in the graph have zero cost and infinite capacity. Thagsent inclusion relations in-between
groups, and between groups and variables. The graphs (€daodrrespond to a special case of
tree-structured hierarchy in the sense of Jenatton et@L0g). Their min-cost flow problems are
equivalent.
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Algorithm 1 Computation of the proximal operator for overlapping graup

input u € RP, a set of groupg; , positive weightgng)ges , andA (regularization parameter).
1: Build the initial graphGo = (Vo, Eo,S;t) as explained in Section 3.4.

2: Compute the optimal flong «— conput eFl ow(Vo, Eo).
3: Return: w = u — & (optimal solution of the proximal problem).

Function conput eFl omV =V, UV, E)
1: Projection stepy < argmin, ¥ jcy, 3(Uj —Yj)? St ¥ jev,Yj <A Sgevy No-

2: For all nodesj in V, sety; to be the capacity of the arg,t).

3: Max-flow step: Updateégj)jevu by computing a max-flow on the gragi, E,s,t).

a4 if 3jeV, st g £y, then

5:  Denote by(s,V*) and(V~,t) the two disjoint subsets @¥,s,t) separated by the minimum
(s,t)-cut of the graph, and remove the arcs betwéenandV~. CallE* andE~ the two
remaining disjoint subsets & corresponding t&* andV .

6:  (&))jevys < comput eFl ow(V " E™).

7. (&))jev; « comput eFl ow(V—,E").

8: end if

9: Return: (&;)jev,

The second step tries to construct a feasible (Ih\f(), satisfying additional capacity constraints
equal toy; on arc(j,t), and whose cost matches this lower bound; this latter pnolsien be cast
as a max-flow problem (Goldberg and Tarjan, 1986). If sucha #wists, the algorithm returns
g =, the cost of the flow reaches the lower bound, and is therefptienal. If such a flow does
not exist, we havé # Y, the lower bound is not achievable, and we build a minim(sr)-cut of
the graph (Ford and Fulkerson, 1956) defining two disjoiets f node®/ ™ andV—; V' is the
part of the graph which is reachable from the source (foryemede j in V', there exists a non-
saturated path fromato j), whereas all paths going frogto nodes iV ~ are saturated. More details
about these properties can be found at the beginning of Afip@h At this point, it is possible to
show that the value of the optimal min-cost flow on all arcsveenV ™ andV ~ is necessary zero.
Thus, removing them yields an equivalent optimization ot which can be decomposed into two
independent problems of smaller sizes and solved reclydiyehe calls taconput eFl ow(V + E™)
andconmput eFl ow(V —,E~). A formal proof of correctness of Algorithm 1 and further @it are
relegated to Appendix B.

The approach of Hochbaum and Hong (1995); Gallo et al. (19883h recasts the quadratic
min-cost flow problem as a parametric max-flow is guaranteduhve the same worst-case com-
plexity as a single max-flow algorithm. However, we have expentally observed a significant
discrepancy between the worst case and empirical comigleXdr these flow problems, essentially
because the empirical cost of each max-flow is significamtigler than its theoretical cost. Despite
the fact that the worst-case guarantees for our algorithaeaker than theirs (up to a factiM|), it
is more adapted to the structure of our graphs and has provsnuch faster in our experiments
(see Appendix D° Some implementation details are also crucial to the effayier the algorithm:

10. The best theoretical worst-case complexity of a max-fisvachieved by Goldberg and Tarjan (1986) and is
O(|V[IE| Iog(\V\2/|E|)). Our algorithm achieves the same worst-case complexitynhe cuts are well balanced—

12
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» Exploiting maximal connected components When there exists no arc between two sub-
sets ofV, the solution can be obtained by solving two smaller optatian problems cor-
responding to the two disjoint subgraphs. It is indeed fbsdio process them indepen-
dently to solve the global min-cost flow problem. To that efffdefore calling the function
conmput eFl omV, E), we look for maximal connected componeiits, E;), ..., (Vn,En) and
call sequentially the proceducenput eFl om(Vi, E;) foriin {1,...,N}.

« Efficient max-flow algorithm: We have implemented the “push-relabel” algorithm of Gold-
berg and Tarjan (1986) to solve our max-flow problems, uslagsical heuristics that signif-
icantly speed it up in practice; see Goldberg and Tarjang)L88d Cherkassky and Goldberg
(1997). We use the so-called “highest-active vertex seleatle, global and gap heuris-
tics” (Goldberg and Tarjan, 1986; Cherkassky and Goldhk9§,7), which has a worst-case
complexity of O(|V |2|E|¥/?) for a graph(V,E,s,t). This algorithm leverages the concept of
pre-flowthat relaxes the definition of flow and allows vertices to haymsitive excess.

* Using flow warm-restarts: The max-flow steps in our algorithm can be initialized wittya
valid pre-flow, enabling warm-restarts. This is also a kayoept in the parametric max-flow
algorithm of Gallo et al. (1989).

» Improved projection step: The first line of the procedureonmput eFl ow can be replaced by
yargminy ey, 3(Uj —V)? St Yjev, V) < ATgev, Ng andly;| <A Y Ng. The ideais to
build a relaxation of Eq. (7) which is closer to the originablplem than the one of Eq. (8),
but that still can be solved in linear time. The structurehaf graph will indeed not aIIO\E(j
to be greater thahy - ; ng after the max-flow step. This modified projection step cahksi
computed in linear time (Brucker, 1984), and leads to bgieformance.

3.5 Computation of the Dual Norm

The dual normQ* of Q, defined for any vectak in RP by

Q*(k) £ max z'k,
Q(z)<1

is a key quantity to study sparsity-inducing regularizasion many respects. For instance, dual
norms are central in working-set algorithms (Jenatton.e28D9; Bach et al., 2011), and arise as
well when proving theoretical estimation or prediction gardees (Negahban et al., 2009).

In our context, we use it to monitor the convergence of th&ipral method through a duality
gap, hence defining a proper optimality criterion for problg). As a brief reminder, the duality
gap of a minimization problem is defined as the differencevben the primal and dual objective
functions, evaluated for a feasible pair of primal/dualialles (see Section 5.5, Boyd and Van-
denberghe, 2004). This gap serves as a certificate of (dirnpjpy: if it is equal to zero, then
the optimum is reached, and provided that strong dualitgyahe converse is true as well (see
Section 5.5, Boyd and Vandenberghe, 2004). A descriptidheflgorithm we use in the experi-
ments (Beck and Teboulle, 2009) along with the integratitth@ computation of the duality gap is
given in Appendix C.

thatis|V*| ~ [V~| ~ |V|/2, but we lose a factdw | when it is not the case. The practical speed of such algosifem
however significantly different than their theoretical wiacase complexities (see Boykov and Kolmogorov, 2004).

13
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We now denote byf* the Fenchel conjugate of (Borwein and Lewis, 2006), defined by
f*(k) £ sup,[z'k — f(2)]. The duality gap for problem (2) can be derived from standeedchel
duality arguments (Borwein and Lewis, 2006) and it is eqoal t

f(w) +AQ(w) + f*(—k) for w,k in RP with Q* (k) <A.

Therefore, evaluating the duality gap requires to compfiigiently Q* in order to find a feasible
dual variablex (the gap is otherwise equal tec and becomes non-informative). This is equivalent
to solving another network flow problem, based on the foltmywariational formulation:

Q*(k)=minT st 3 E9=k, andvge g, [|E%1 <tng with &/ =0if j¢g  (9)
EcRrPx§] gcs

In the network problem associated with (9), the capacitrethe arcss,g), g € G, are set tang,
and the capacities on the arGst), j in {1,..., p}, are fixed tok;. Solving problem (9) amounts
to finding the smallest value af such that there exists a flow saturating all the capaaitjes the
arcs leading to the sintk Equation (9) and Algorithm 2 are proven to be correct in Aqpe B.

Algorithm 2 Computation of the dual norm.

input k € RP, a set of groupg;, positive weightgng)geg -
1: Build the initial graphGo = (Vo, Eo, S,t) as explained in Section 3.5.
2: T < dual Nor m\Vp, Eo).
3: Return: Tt (value of the dual norm).

Function dual Nor m(V =V, UV, E)
T+ (Y jev, Kj)/(Zgevy, Ng) @nd set the capacities of arsg) to g for all g in V.
: Max-flow step: Updat€g;);cy, by computing a max-flow on the gragh, E, s;t).
if 3jeW s.t.&;#K;then
Define(V*,E*) and(V—,E™) as in Algorithm 1, and sat«+ dual Norm(V—,E™).
end if
: Return: 1.

=

@ gk w N

4. Optimization with Proximal Splitting Methods

We now present proximal splitting algorithms (see Comisestied Pesquet, 2008, 2010; Tomioka
et al., 2011; Boyd et al., 2011, and references therein)divirgy Eq. (2). Differentiability off is
not required here and the regularization function can elleea sum of»- or £-,-norms. However,
we assume that:

(A) eitherf can be writtenf (w) = 57, fi(w), where the functiond; are such that prqx can be
obtained in closed form for ay > 0 and alli—that is, for allu in R™, the following problems
admit closed form solutions: mjpgm 3||u — v||3+ yfi(v).

(B) or f can be writtenf (w) = f(Xw) for all w in RP, whereX in R™P is a design matrix, and
one knows how to efficiently compute prgxor all y > 0.

14
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It is easy to show that this condition is satisfied for the sguand hinge loss functions, making it
possible to build linear SVMs with a structured sparse r@ggation. These assumptions are not
the same as the ones of Section 3, and the scope of the prosdieiressed is therefore slightly dif-
ferent. Proximal splitting methods seem indeed to offerarl@xibility regarding the regularization
function, since they can deal with sums®@tnorms!! However, proximal gradient methods, as
presented in Section 3, enjoy a few advantages over proxspliing methods, hamely: automatic
parameter tuning with line-search schemes (Nesterov,)260@wn convergence rates (Nesterov,
2007; Beck and Teboulle, 2009), and ability to provide spaslutions (approximate solutions
obtained with proximal splitting methods often have smalles, but not “true” zeros).

4.1 Algorithms

We consider a class of algorithms which leverage the cormfeydriable splitting (see Combettes
and Pesquet, 2010; Bertsekas and Tsitsiklis, 1989; Tomabkd, 2011). The key is to introduce
additional variableg9 in R/9, one for every groug in G, and equivalently reformulate Eq. (2) as

i 9 9_
min f(w)+A ZFnQHZ | st.Vge g, z9=wy, (10)
Z¢RlY for geg 9<g

The issue of overlapping groups is removed, but new conssrare added, and as in Section 3, the
method introduces additional variables which induce a nrgroost ofO(y 4 |g]).-

To solve this problem, it is possible to use the so-calleeradtting direction method of multi-
pliers (ADMM) (see Combettes and Pesquet, 2010; Bertsakad sitsiklis, 1989; Tomioka et al.,
2011; Boyd et al., 2012% It introduces dual variableg? in RI9 for all g in ¢, and defines the
augmented Lagrangian:

Y
£(W,(B)geg, (Wgeg) = FW)+ 5 [Angl|27] + 8" (27— wg) + 5127 — we 2]
geg

wherey > 0 is a parameter. It is easy to show that solving Eq. (10) amsawnfinding a saddle-
point of the augmented Lagrangi&hThe ADMM algorithm finds such a saddle-point by iterating
between the minimization of with respect to each primal variable, keeping the other dixed,
and gradient ascent steps with respect to the dual varididle® precisely, it can be summarized as:

1. Minimize £ with respect tav, keeping the other variables fixed.

11. We are not aware of any efficient algorithm providing tkaot solution of the proximal operator associated to a sum
of ¢»-norms, which would be necessary for using (acceleratembimial gradient methods. An iterative algorithm
could possibly be used to compute it approximately (e.g,J@natton et al., 2010a, 2011), but such a procedure
would be computationally expensive and would require to e & deal with approximate computations of the
proximal operators (e.g., see Combettes and Pesquet, 30hfidt et al., 2011, and discussions therein). We have
chosen not to consider this possibility in this paper.

12. This method is used by Sprechmann et al. (2010) for cdngptie proximal operator associated to hierarchical
norms, and independently in the same context as ours by Bald(@011) and Qin and Goldfarb (2011).

13. The augmented Lagrangian is in fact the classical Laggarn(see Boyd and Vandenberghe, 2004) of the following
optimization problem which is equivalent to Eq. (10):

, v )
min f(w)+A )|+ 2|8 —wg|5 s.t. Vge g, 29 =wy.
WERP,(29€RI9) g (W) gezg Noll 2’| 2 I all2 geg 9
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2. Minimize £ with respect to the¥’s, keeping the other variables fixed. The solution can be

obtained in closed form: for aff in G, z9 < ProXng, | [wg — %vg].
9.

3. Take a gradient ascent step.onvith respect to the9's: v9 < v9 4 y(z9 — wy).
4. Go back to step 1.

Such a procedure is guaranteed to converge to the desingiibadior all value ofy > 0 (however,
tuningy can greatly influence the convergence speed), but solviigesitly step 1 can be difficult.
To cope with this issue, we propose two variations explgiissumptiongA) and(B).

4.1.1 SPLITTING THE LOSSFUNCTION f

We assume conditioA)—that is, we havef (w) = S, fi(w). For example, wheri is the square
loss functionf (w) = ||y — Xw||3, whereX in R™P is a design matrix angl is in R", we would
define for alli in {1,...,n} the functionsf; : R — R such thatfi (w) £ 1(y; — xw)2, wherex; is
thei-th row of X.

We now introduce new variableg in RP for i = 1,....n, and replacef (w) in Eq. (10) by
s, fi(v)), with the additional constraints thelt=w. The resulting equivalent optimization prob-
lem can now be tackled using the ADMM algorithm, followingetkame methodology presented
above. It is easy to show that every step can be obtainedeeifizi as long as one knows how to
compute the proximal operator associated to the functfpimsclosed form. This is in fact the case
for the square and hinge loss functions, wherethe number of training points. The main problem
of this strategy is the possible high memory usage it requirgenn is large.

4.1.2 DEALING WITH THE DESIGN MATRIX

If we assume conditio(B), another possibility consists of introducing a new vagabin R", such
that one can replace the functidiiw) = f(Xw) by f(v) in Eq. (10) with the additional constraint
v = Xw. Using directly the ADMM algorithm to solve the correspamgliproblem implies adding
a termk " (v — Xw) + ¥|lv — Xw||3 to the augmented Lagrangian wherek is a new dual vari-
able. The minimization of with respect tos is now obtained by « prox%f[Xw — K], which is

easy to compute according (B). However, the design matriX in the quadratic term makes the
minimization of £ with respect tov more difficult. To overcome this issue, we adopt a strategy
presented by Zhang et al. (2011), which replaces at iteratibe quadratic terr||[v —Xw/||3 in the
augmented Lagrangian by an additional proximity te&tiv — Xw||3 + ¥[lw — w¥||3, wherew* is

the current estimate af, and|jw — w¥|j = (w —w¥)"Q(w — w¥), whereQ is a symmetric posi-
tive definite matrix. By choosin@ £ &l — XX, with & large enough, minimizing with respect

to w becomes simple, while convergence to the solution is stduead. More details can be found
in Zhang et al. (2011).

5. Applications and Experiments

In this section, we present various experiments demogirétte applicability and the benefits of
our methods for solving large-scale sparse and structegpaarized problems.
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5.1 Speed Benchmark

We consider a structured sparse decomposition problemowéHapping groups of.-norms, and
compare the proximal gradient algorithm FISTA (Beck anddléle, 2009) with our proximal op-
erator presented in Section 3 (referred to as ProxFlow) vaviants of proximal splitting methods,
(ADMM) and (Lin-ADMM) respectively presented in Sectionl4l and 4.1.2, and two generic
optimization techniques, namely a subgradient descen} 86 an interior point methotf, on a
regularized linear regression problem. SG, ProxFlow, ADMM Lin-ADMM are implemented
in C++.1°> Experiments are run on a single-cord® Hz CPU. We consider a design matkxin
R"™P puilt from overcomplete dictionaries of discrete cosiramsforms (DCT), which are naturally
organized on one- or two-dimensional grids and displayllooeelations. The following families
of groups¢g using this spatial information are thus considered: (1)yyeeentiguous sequence of
length 3 for the one-dimensional case, and (2) ever§-3quare in the two-dimensional setting. We
generate vectongin R" according to the linear modgl= Xw + €, whereg ~ a( (0,0.01||Xwo||3).
The vectowg has about 20% percent nonzero components, randomly stledide respecting the
structure ofg, and uniformly generated ip-1, 1].

In our experiments, the regularization parameatés chosen to achieve the same level of spar-
sity (20%). For SG, ADMM and Lin-ADMM, some parameters ardimjzed to provide the low-
est value of the objective function after 1000 iterationstted respective algorithms. For SG,
we take the step size to be equalagk + b), wherek is the iteration number, anth, b) are
the pair of parameters selected {ih0—3,...,10} x {10?,10°,10*}. Note that a step size of the
form a/(v/t +b) is also commonly used in subgradient descent algorithmshdrcontext of hi-
erarchical norms, both choices have led to similar resultgdtton et al., 2011). The parameger
for ADMM is selected in{102,...,10°}. The parametergy,d) for Lin-ADMM are selected in
{1072,...,10%} x {1071,...,10%}. For interior point methods, since problem (2) can be calseei
as a quadratic (QP) or as a conic program (CP), we show in &iguhe results for both formu-
lations. On three problems of different sizes, withp) € {(100,10%), (1024 10%), (1024 10°)},
our algorithms ProxFlow, ADMM and Lin-ADMM compare favoigtwith the other methods, (see
Figure 2), except for ADMM in the large-scale setting whidklgs an objective function value
similar to that of SG after f0seconds. Among ProxFlow, ADMM and Lin-ADMM, ProxFlow
is consistently better than Lin-ADMM, which is itself battdhan ADMM. Note that for the small
scale problem, the performance of ProxFlow and Lin-ADMMimikr. In addition, note that QP,
CP, SG, ADMM and Lin-ADMM do not obtain sparse solutions, wdas ProxFlow doe¥$

5.2 Wavelet Denoising with Structured Sparsity

We now illustrate the results of Section 3, where a singlgalaacale proximal operatop & 250000)
associated to a sum d&f,-norms has to be computed. We choose an image denoising tsk w
an orthonormal wavelet basis, following an experiment Isintio one proposed in Jenatton et al.
(2011). Specifically, we consider the following formulatio

min 2 ly —Xw[3+AQ(w), (11)

WERP

14. In our simulations, we use the commercial softwdrgek, ht t p: / / www. mosek. coml

15. Our implementation of ProxFlow is availablehat p: / / www. di . ens. fr/wi | | ow SPAMS/ .

16. To reduce the computational cost of this experimentctirees reported are the results of one single run. Similar
types of experiments with several runs have shown very sraghbility (Bach et al., 2011).
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n=100, p=1000, one-dimensional DCT n=1024, p=10000, one-dimensional DCT n=1024, p=100000, one-dimensional DCT
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Figure 2: Speed comparisons: distance to the optimal puaiaé versus CPU time (log-log scale).
Due to the computational burden, QP and CP could not be runeny problem.

wherey in RP is a noisy input imagey represents wavelets coefficienksjn RP*P is an orthonor-
mal wavelet basisXw is the estimate of the denoised image, &é a sparsity-inducing norm.
Since here the basis is orthonormal, solving the deconipogitroblem boils down to computing
W* = proxo[X"y]. This makes of Algorithm 1 a good candidate to solve it wikeis a sum of
{»-norms. We compare the following candidates for the spamducing normQ:

 the/;-norm, leading to the wavelet soft-thresholding of Donohd dohnstone (1995).

» a sum ofé,-norms with a hierarchical group structure adapted to theelea coefficients,
as proposed in Jenatton et al. (2011). Considering a naquid-tree for wavelet coeffi-
cients (see Mallat, 1999), this norm takes the form of Eq.wiBh one group per wavelet
coefficient that contains the coefficient and all its deseatslin the tree. We call this norm
Qtree

» a sum off,-norms with overlapping groups representing 2 spatial neighborhoods in the
wavelet domain. This regularization encourages neighbonavelet coefficients to be set
to zero together, which was also exploited in the past inktbeesholding approaches for
wavelet denoising (Cai, 1999). We call this nofhgig.

We consider Daubechies3 wavelets (see Mallat, 1999) fomidieix X, use 12 classical standard
test imaged/ and generate noisy versions of them corrupted by a white Eausioise of vari-
ancec?. For each image, we test several values\cf Zﬁo\/w, with i taken in the range
{-15,-14,...,15}. We then keep the paramefegiving the best reconstruction error on average
on the 12 images. The factor/logp is a classical heuristic for choosing a reasonable regalari
tion parameter (see Mallat, 1999). We provide reconswuat@sults in terms of PSNR in TableH..
Unlike Jenatton et al. (2011), who set all the weighgsin Q equal to one, we tried exponential
weights of the fornmg = oK, with k being the depth of the group in the wavelet tree, piisitaken

in {0.25,0.5,1,2,4}. As for A, the value providing the best reconstruction is kept. Theehe
transforms in our experiments are computed with the maglglu®ls software-? Interestingly, we
observe in Table 1 that the results obtained vi¥hiq are significantly better than those obtained

17. These images are used in classical image denoisinginankfi See Mairal et al. (2009).

18. Denoting by MSE the mean-squared-error for images wimbsasities are between 0 and 255, the PSNR is defined
as PSNR= 10log; o(255? /MSE) and is measured in dB. A gain of 1dB reduces the MSE by appiatteiy 20%.

19.http://www cns. nyu. edu/ ~eer o/ steerpyr/.
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PSNR IPSNR vs./q

Y 41 Qtree | Qgrid {1 Qiree Qgrid

5 | 35.67| 35.98| 36.15| 0.00+.0 | 0.31+.18 | 0.48+.25
10 | 31.00| 31.60| 31.88| 0.00+.0 | 0.61+.28 | 0.88+ .28
25 | 25.68| 26.77| 27.07| 0.00+.0 | 1.094 .32 | 1.38+.26
50 | 22.37| 23.84| 24.06| 0.00+.0 | 1.47+ .34 | 1.68+ .41
100 | 19.64| 21.49| 21.56| 0.00+.0 | 1.854+.28 | 1.92+.29

Table 1. PSNR measured for the denoising of 12 standard snaben the regularization function
is the /1-norm, the tree-structured noryee and the structured norMgig, and improvement in
PSNR compared to thg-norm (IPSNR). Best results for each level of noise and eanlelet type
are in bold. The reported values are averaged over 5 rungiffiénent noise realizations.

with Qee, meaning that encouraging spatial consistency in wavelefficients is more effective
than using a hierarchical coding. We also note that our ambrds relatively fast, despite the high
dimension of the problem. Solving exactly the proximal geab with Qgig for an image with
p =512x 512= 262144 pixels (and therefore approximately the same numibgroups) takes
approximately=~ 4 — 6 seconds on a single core of a 3.07GHz CPU.

5.3 CUR-like Matrix Factorization

In this experiment, we show how our tools can be used to parfbe so-called CUR matrix decom-
position (Mahoney and Drineas, 2009). It consists of a lamkrapproximation of a data matr

in R™P in the form of a product of three matrices—thatX¥sx CUR. The particularity of the CUR
decomposition lies in the fact that the matri€es R™¢ andR € R"*P are constrained to be respec-
tively a subset o€ columns and rows of the original matrixX. The third matrixU € R®" is then
given byC"XR™, whereA™ denotes a Moore-Penrose generalized inverse of the nfatftixorn
and Johnson, 1990). Such a matrix factorization is pagitubppealing when the interpretability
of the results matters (Mahoney and Drineas, 2009). Foamast, when studying gene-expression
datasets, it is easier to gain insight from the selectiorctfa patients and genes, rather than from
linear combinations of them.

In Mahoney and Drineas (2009), CUR decompositions are ctaddwy a sampling procedure
based on the singular value decompositiorXofln a recent work, Bien et al. (2010) have shown
thatpartial CUR decompositions, i.e., the selection of either rows turoas ofX, can be obtained
by solving a convex program with a group-Lasso penalty. Vdp@se to extend this approach to
the simultaneous selection of both rows and column,afith the following convex problem:

1 X noo p
WaBpen EHX — XWX HF*‘)\rowi;HWI o +)\coIJ;HWj oo 12)

In this formulation, the two sparsity-inducing penaltiesitrolled by the parameteks,, andAq set
to zero some entire rows and columns of the solutions of prok{lL2). Now, let us denote B/
in RI"*M the submatrix oW reduced to its nonzero rows and columns, respectively euidy
I C{1,...,p} and JC {1,...,n}. We can then readily identify the three components of the CUR
decomposition oK, namely
XWX =CW ;R ~ X.
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Problem (12) has a smooth convex data-fitting term and biimgsplay a sparsity-inducing norm
with overlapping groups of variables (the rows and the colsiof W). As a result, it is a partic-
ular instance of problem (2) that can therefore be handled te optimization tools introduced
in this paper. We now compare the performance of the samplingedure from Mahoney and
Drineas (2009) with our proposed sparsity-based approaxthis end, we consider the four gene-
expression datasedsTunor s, Brai n_Tunor s1, Leukem al andSRBCT, with respective dimensions
(n,p) €{(60,5727),(90,5921), (72,5328, (83,2309 }.2° In the sequel, the matriX is normalized

to have unit Frobenius-norm while each of its columns ise@at. To begin with, we run our ap-
proack! over a grid of values foloy andAc in order to obtain solutions with different sparsity
levels, i.e., ranging fronil| = p and|J| = n down to|l| = |J| = 0. For each pair of value$l|, |J|],
we then apply the sampling procedure from Mahoney and Dsirf2@09). Finally, the variance
explained by the CUR decompositions is reported in Figua ®6th methods. Since the sampling
approach involves some randomness, we show the averagdamudusl deviation of the results
based on five initializations. The conclusions we can dramfthe experiments match the ones
already reported in Bien et al. (2010) for the partial CURateposition. We can indeed see that
both schemes perform similarly. However, our approach hastvantage not to be randomized,
which can be less disconcerting in the practical perspedfanalyzing a single run of the algo-
rithm. It is finally worth being mentioned that the convex eggrh we develop here is flexible and
can be extended in different ways. For instance, we can meagi add further low-rank/sparsity
constraints oW thanks to sparsity-promoting convex regularizations.

5.4 Background Subtraction

Following Cehver et al. (2008); Huang et al. (2009), we cdasia background subtraction task.
Given a sequence of frames from a fixed camera, we try to seégmeforeground objects in a new
image. If we denote by € R" this image composed af pixels, we modely as a sparse linear
combination ofp other imagesX € R"P, plus an error terne in R", i.e.,y ~ Xw + e for some
sparse vectow in RP. This approach is reminiscent of Wright et al. (2009a) in¢hatext of face
recognition, where is further made sparse to deal with small occlusions. Tha ¥w accounts
for backgroundparts present in bothhandX, while e contains specific, dioreground objects iny.
The resulting optimization problem is given by

: 1 :
min_ Z[ly—Xw—e||3+ A1||w|1 +A2{]|e]ls + Q(e)}, with A1,A2 > 0. (13)

WeRP ecR 2

In this formulation, the only;-norm penalty does not take into account the fact that neighd
pixels iny are likely to share the same label (background or foregrpuvitich may lead to scattered
pieces of foreground and background regions (Figure 4).R&kefore put an additional structured
regularization termQQ on e, where the groups iw are all the overlapping 83-squares on the
image. For the sake of comparison, we also consider theaggationQ where the groups are
non-overlapping3x 3-squares.

This optimization problem can be viewed as an instance dblpro (2), with the particular
design matrixX, 1] in R™(P+"  defined as the columnwise concatenatiorXodnd the identity

20. The datasets are freely availabldttp: / / www. gens- system or g/ .
21. More precisely, since the penalties in problem (12)éthtte coefficients ofV, we follow a two-step procedure: We
first run our approach to determine the sets of nonzero rodgalumns, and then computé,; = C*XR™*.
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Figure 3: Explained variance of the CUR decompositionsiobthfor our sparsity-based approach
and the sampling scheme from Mahoney and Drineas (2009)thEdatter, we report the average
and standard deviation of the results based on five inidatins. From left to right and top to
bottom, the curves correspond to the data8eksnor s, Brai n_Tunor s1, Leuken al andSRBCT.

matrix. As a result, we could directly apply the same procedis the one used in the other ex-
periments. Instead, we further exploit the specific stmectf problem (13): Notice that for a fixed
vectore, the optimization with respect W is a standard Lasso problem (with the vector of obser-
vationsy — €),22 while for w fixed, we simply have a proximal problem associated to the cufn
and thef;-norm. Alternating between these two simple and computatip inexpensive steps, i.e.,
optimizing with respect to one variable while keeping theeotone fixed, is guaranteed to converge
to a solution of (13%3 In our simulations, this alternating scheme has led to &fsignt speed-up
compared to the general procedure.

A dataset with hand-segmented images is used to illustnateffect ofQ.2* For simplicity,
we use a single regularization parameter, he.= A2, chosen to maximize the number of pixels
matching the ground truth. We consider= 200 images witm = 57600 pixels (i.e., a resolution

22. Since successive frames might not change much, the nelofiX exhibit strong correlations. Consequently, we use
the LARS algorithm (Efron et al., 2004) whose complexityridependent of the level of correlationXn

23. More precisely, the convergence is guaranteed sinaativamooth part in (13) iseparablewith respect tav ande
(Tseng, 2001). The result from Bertsekas (1999) may alscpbéeal here, after reformulating (13) as a smooth
convex problem under separable conic constraints.

24 http://research. nicrosoft.com en-us/ um peopl e/ jckrunmi wal | f1 ower/testimges. htm
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of 120x 160, times 3 for the RGB channels). As shown in Figure 4, agflinmproves the back-
ground subtraction results for the two tested images, byvamg the scattered artifacts due to the
lack of structural constraints of thig-norm, which encodes neither spatial nor color consistency
The group sparsity regularizati€a also improves upon th@-norm but introduces block-artefacts
corresponding to the non-overlapping group structure.

5.5 Topographic Dictionary Learning

Letus consider asat= [y, ... y"] in R™" of nsignals of dimensiom. The problem of dictionary
learning, originally introduced by Olshausen and Field9@9 is a matrix factorization problem
which aims at representing these signals as linear conisadfdictionary elementghat are the
columns of a matrixX = [x%,...,xP] in R™P. More precisely, the dictionar¥X is learnedalong
with a matrix ofdecomposition coefficien® = [w?,...,w"] in RP*", so thaty' ~ Xw' for every
signaly'. Typically, nis large compared tmandp. In this experiment, we consider for instance a
database ofi = 100000 natural image patches of sime= 12 x 12 pixels, for dictionaries of size
p = 400. Adapting the dictionary to specific data has proven taideful in many applications,
including image restoration (Elad and Aharon, 2006; Matall., 2009), learning image features in
computer vision (Kavukcuoglu et al., 2009). The resultipgrization problem we are interested
in can be written
- -1 i2 i

xeemiepn 2, 51V = XWla+AQ(W), (14)
wherec is a convex set of matrices iR™P whose columns havé-norms less than or equal to
one?® \ is a regularization parameter afids a sparsity-inducing norm. Whéhis the/;-norm, we
obtain a classical formulation, which is known to producetidnary elements that are reminiscent
of Gabor-like functions, when the columnsYfare whitened natural image patches (Olshausen and
Field, 1996).

Another line of research tries to put a structure on decoitipnsoefficients instead of consid-
ering them as independent. Jenatton et al. (2010a, 201&)bainstance embedded dictionary ele-
ments into a tree, by using a hierarchical norm (Zhao et @09pfor Q. This model encodes a rule
saying that a dictionary element can be used in the decotigosf a signal only if its ancestors in
the tree are used as well. In the related context of indepemdenponent analysis (ICA), Hyvarinen
et al. (2001) have arranged independent components (pondmg to dictionary elements) on a
two-dimensional grid, and have modelled spatial deperidertaetween them. When learned on
whitened natural image patches, this model exhibits “Gdiket functions which are smoothly or-
ganized on the grid, which the authors call a topographic.nfegshown by Kavukcuoglu et al.
(2009), such a result can be reproduced with a dictionamnileg formulation, using a structured
norm for Q. Following their formulation, we organize thedictionary elements on &p x ,/p
grid, and considep overlapping groups that are<33 or 4x 4 spatial neighborhoods on the grid (to
avoid boundary effects, we assume the grid to be cyclic). @fmeQ as a sum of,-norms over
these groups, since thiig-norm has proven to be less adapted for this task. Anothenuiation
achieving a similar effect was also proposed by Garrigues@ishausen (2010) in the context of
sparse coding with a probabilistic model.

25. Since the quadratic term in Eq. (14) is invariant by nplifthg X by a scalar andlV by its inverse, constraining the
norm of X has proven to be necessary in practice to prevent it fromgtaaibitrarily large.
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() £1, 87.1%.

(d) ¢1+ ©Q (non-overlapping), 98%. (e) 41+ Q (overlapping), 98%. (f) Q, another frame.

(i) 1, 90.5%.

(i) £1+ € (non-overlapping), 98%. (k) ¢1+ Q (overlapping), 938%. () Q, another frame.

Figure 4: Background subtraction results. For two videos,present the original imagg the
estimated background (i.&Xw) reconstructed by our method, and the foreground (i.e spaesity
pattern ofe as a mask on the original image) detected with/; + Q (non-overlapping groups) and
with /1 + Q. Figures (f) and (I) present another foreground found \tton a different image, with
the same values &f;, A, as for the previous image. Best seen in color.
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Figure 5: Topographic dictionaries with 400 elements,rledron a database of ¥212 whitened
natural image patches. Left: with<33 cyclic overlapping groups. Right: with>44 cyclic overlap-

ping groups.

As Kavukcuoglu et al. (2009); Olshausen and Field (1996)cwresider a projected stochastic
gradient descent algorithm for learnidg—that is, at iteratiort, we randomly draw one signgl
from the databas®, compute a sparse codé = argmin, ge %Hyt — Xw!||Z +AQ(w), and up-
dateX as follows: X < M [X — p(Xw! — y )w!"], wherep is a fixed learning rate, arfd, denotes
the operator performing orthogonal projections onto thiecseln practice, to further improve the
performance, we use a mini-batch, drawing 500 signals ehération instead of one (see Mairal
et al., 2010a). Our approach mainly differs from Kavukcuoet al. (2009) in the way the sparse
codesw! are obtained. Whereas Kavukcuoglu et al. (2009) uses aaiegt descent algorithm to
solve them, we use the proximal splitting methods present8éction 4. The natural image patches
we use are also preprocessed: They are first centered byiregribgir mean value (often called DC
component), and whitened, as often done in the literatuygdkinen et al., 2001; Garrigues and Ol-
shausen, 2010). The parametds chosen such that in averali — Xw'||» ~ 0.4||y' | » for all new
patch considered by the algorithm. Examples of obtainadtseare shown on Figure 5, and exhibit
similarities with the topographic maps of Hyvarinen et(a001). Note that even though Eq. (14) is
convex with respect to each variableandW when one fixes the other, it is not jointly convex, and
one can not guarantee our method to find a global optimum. iaspintrinsic non-convex nature,
local minima obtained with various optimization proceduhave been shown to be good enough
for many tasks (Elad and Aharon, 2006; Mairal et al., 2009;ukauoglu et al., 2009).

5.6 Multi-Task Learning of Hierarchical Structures

As mentioned in the previous section, Jenatton et al. (20#& recently proposed to use a hierar-
chical structured norm to learn dictionaries of naturalge@atches. In Jenatton et al. (2010a), the
dictionary elements are embedded ipradefinedree T, via a particular instance of the structured

norm Q, which we refer to it afdyee, and callg the underlying set of groups. In this case, using
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the same notation as in Section 5.5, each sighabimits a sparse decomposition in the form of a
subtree of dictionary elements.

Inspired by ideas from multi-task learning (Obozinski et 2010), we propose to learn the
tree structurer by pruning irrelevant parts of a larger initial trag. We achieve this by using
an additional regularization terfj,n; across the different decompositions, so that subtreag of
will simultaneouslype removed for all signalg. With the notation from Section 5.5, the approach
of Jenatton et al. (2010a) is then extended by the followamgiilation:

. 1211 - -
min =Y [ 2]y - Xwi |2+ A0 W']}\Q--W 15
Xec WeRP ni;[ZHy H2+ 1 tree( ) +A2 JOII’lt( )7 ( )
whereW = [wl, ..., w" is the matrix of decomposition coefficientsik®*". The new regularization
term operates on the rows 0t and is defined aQgint(W) £ 3 gey M@X%c (1.} [Wy|.?° The overall

penalty onw, which results from the combination Qfiree andQjoint, is itself an instance dR with
general overlapping groups, as defined in Eq (3).

To address problem (15), we use the same optimization scherdenatton et al. (2010a), i.e.,
alternating betweeX andW, fixing one variable while optimizing with respect to the ethThe
task we consider is the denoising of natural image patchéh, the same dataset and protocol
as Jenatton et al. (2010a). We study whether learning tharbiey of the dictionary elements
improves the denoising performance, compared to stangendes coding (i.e., wheQee is the
£1-norm andA, = 0) and the hierarchical dictionary learning of Jenattonle(2910a) based on
predefined trees (i.e\p = 0). The dimensions of the training set — 50000 patches of&ize for
dictionaries with up tgp = 400 elements — impose to handle extremely large graphs, |#jtk
V| ~4.10’. Since problem (15) is too large to be solved exactly sufittyemany times to select the
regularization parametefd,A,) rigorously, we use the following heuristics: we optimizestip
with the currently pruned tree held fixed (i.2p = 0), and only prune the tree (i.&\, > 0) every
few steps on a random subset of 10000 patches. We considsartie hierarchies as in Jenatton
et al. (2010a), involving between 30 and 400 dictionary e€ets. The regularization paramelqr
is selected on the validation set of 25000 patches, for hoginse coding (Flat) and hierarchical
dictionary learning (Tree). Starting from the tree givirige tbest performance (in this case the
largest one, see Figure 6), we solve problem (15) following leeuristics, for increasing values
of A». As shown in Figure 6, there is a regime where our approadbnpes significantly better than
the two other compared methods. The standard deviatioreaidfse is @ (the pixels have values
in [0,1]); no significant improvements were observed for lower kw#l noise. Our experiments
use the algorithm of Beck and Teboulle (2009) based on ouwirpiad operator, with weightgg set
to 1. We present this algorithm in more details in Appendix C.

6. Conclusion

We have presented new optimization methods for solvingsgpgtructured problems involving sums
of /»- or £,»-norms of any (overlapping) groups of variables. Interegi, this sheds new light on
connections between sparse methods and the literaturévednikeflow optimization. In particular,
the proximal operator for the sum é&f-norms can be cast as a specific form of quadratic min-cost
flow problem, for which we proposed an efficient and simpleatgm.

26. The simplified case whe®tee and Qjoint are thel;- and mixed/y /¢>-norms (Yuan and Lin, 2006) corresponds
to Sprechmann et al. (2010).
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Figure 6: Left: Hierarchy obtained by pruning a larger trég® elements. Right: Mean square
error versus dictionary size. The error bars represent tarward deviations, based on three runs.

In addition to making it possible to resort to acceleratatigmt methods, an efficient compu-
tation of the proximal operator offers more generally aaiarodularity, in that it can be used as a
building-block for other optimization problems. A case it is dictionary learning where prox-
imal problems come up and have to be solved repeatedly inrem-loop. Interesting future work
includes the computation of other structured norms sucheasrie introduced in Jacob et al. (2009),
or total-variation based penalties, whose proximal opesadre also based on minimum cost flow
problems (Chambolle and Darbon, 2009). Several expersragrnonstrate that our algorithm can
be applied to a wide class of learning problems, which havdeen addressed before with convex
sparse methods.
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Appendix A. Equivalence to Canonical Graphs
Formally, the notion of equivalence between graphs can bmersarized by the following lemma:

Lemma 2 (Equivalence to canonical graphs.)

Let G= (V,E,s,t) be the canonical graph corresponding to a group structgirdet G = (V,E’,s t)
be a graph sharing the same set of vertices, source and siGk bst with a different arc set’'EWe
say that Gis equivalent to G if and only if the following conditions tol

« Arcs of E outgoing from the source are the same as in E, with the sanis and capacities.
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« Arcs of E going to the sink are the same as in E, with the same costs patits.

* For every arc(g, j) in E, with (g, j) in Vigr x V, there exists a unique path in fom g to j
with zero costs and infinite capacities on every arc of thépat

« Conversely, if there exists a path irf Between a vertex g ingVand a vertex j in Y, then
there exists an ar¢g, j) in E.

Then, the cost of the optimal min-cost flow on G arici@ the same. Moreover, the values of the
optimal flow on the arc$j,t), jinV,, are the same on G and'G

Proof. We first notice that on bots andG/, the cost of a flow on the graph only depends on the
flow on the arcgj,t), j in i, which we have denoted tyin E.

We will prove that finding a feasible flom on G with a costc(m) is equivalent to finding a
feasible flowr' on G’ with the same cost(1t) = c(17). We now use the concept péth flow which
is a flow vector inG carrying the same positive value on every arc of a directé¢k Ipetween two
nodes ofG. It intuitively corresponds to sending a positive amourft@k along a path of the graph.

According to the definition of graph equivalence introdugethe Lemma, it is easy to show
that there is a bijection between the arc&€inand the paths it’ with positive capacities on every
arc. Given now a feasible flom in G, we build a feasible flowt on G’ which is asumof path
flows. More precisely, for every amcin E, we consider its equivalent path i, with a path flow
carrying the same amount of flow asTherefore, each a@& in E’ has a total amount of flow that
is equal to the sum of the flows carried by the path flows goirey av It is also easy to show that
this construction builds a flow 06’ (capacity and conservation constraints are satisfied) fzatd t
this flow 7 has the same cost asthat is,c() = c(17).

Conversely, given a flom' on G/, we use a classical path flow decomposition (see Bertsekas,
1998, Proposition 1.1), saying that there exists a decoitipo®f 17 as a sum of path flows ig’.
Using the bijection described above, we know that each petifiei previous sums corresponds to a
unique arc irE. We now build a flowrtin G, by associating to each path flow in the decomposition
of 1, an arc inE carrying the same amount of flow. The flow of every other arE is set to zero.

It is also easy to show that this builds a valid flowGrthat has the same costds |

Appendix B. Convergence Analysis

We show in this section the correctness of Algorithm 1 for pating the proximal operator, and of
Algorithm 2 for computing the dual norf2*.

B.1 Computation of the Proximal Operator

We first prove that our algorithm converges and that it findsdptimal solution of the proximal
problem. This requires that we introduce the optimalityditans for problem (6) derived from Je-
natton et al. (2010a, 2011) since our convergence proohtahly checks that these conditions are
satisfied upon termination of the algorithm.

Lemma 3 (Optimality conditions of the problem (6) from Jenaton et al. 2010a, 2011)
The primal-dual variablegw, &) are respectively solutions of the primal (4) and dual profxe(6)
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if and only if the dual variabl€, is feasible for the problem (6) and

W=U-Y4c,8&,

Note that these optimality conditions provide an intuitivew of our min-cost flow problem.
Solving the min-cost flow problem is equivalent to sending thaximum amount of flow in the
graph under the capacity constraints, while respectinguteethatthe flow coming from a group g
should always be directed to the variableswith maximum residual; — 4 &7. This point can
be more formaly seen by noticing that one of the optimalitpditions above corresponds to the
case of equality in thé; /¢, HOlder inequality.

Before proving the convergence and correctness of ourigigorwe also recall classical prop-
erties of the min capacity cuts, which we intensively uséniproofs of this paper. The procedure
conput eFl ow of our algorithm finds a minimungs,t)-cut of a graphG = (V,E, s;t), dividing the
setV into two disjoint part/ " andV . V' is by construction the sets of nodesdrsuch that there
exists a non-saturating path framto V, while all the paths fronstoV ~ are saturated. Conversely,
arcs fromV ™ tot are all saturated, whereas there can be non-saturated@rcg f tot. Moreover,
the following properties, which are illustrated on Figuten@ld

 There is no arc going frod ™ to V. Otherwise the value of the cut would be infinite (arcs
insideV have infinite capacity by construction of our graph).

 There is no flow going frov ~ toV™* (see Bertsekas, 1998).

» The cut goes through all arcs going fraft tot, and all arcs going frorstoV .

E3+&3<Ang

Figure 7: Cut computed by our algorithia.™ =V UVg;, with Vi, = {g}, V" ={1,2}, andV ™~ =
Vi UV, with Vg, = {h}, V; ={3}. Arcs going fromsto V™ are saturated, as well as arcs going

from V™ tot. Saturated arcs are in bold. Arcs with zero flow are dotted.
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Recall that we assume (cf. Section 3.3) that the scalasse all non negative, and that we add
non-negativity constraints afi With the optimality conditions of Lemma 3 in hand, we canwho
our first convergence result.

Proposition 1 (Convergence of Algorithm 1)
Algorithm 1 converges in a finite and polynomial number ofrafiens.

Proof. Our algorithm splits recursively the graph into disjointsts and processes each part recur-
sively. The processing of one part requires an orthogormgégtion onto arf;-ball and a max-flow
algorithm, which can both be computed in polynomial time pfave that the procedure converges,
it is sufficient to show that when the procedwmnput eFl ow is called for a graphV, E,s,t) and
computes a cufV ",V ), then the components™ andV ~ are both non-empty.

Suppose for instance thet = 0. In this case, the capacity of the min-cut is equay oy, Y;,
and the value of the max-flow '@ievuij. Using the classical max-flow/min-cut theorem (Ford and
Fulkerson, 1956), we have equality between these two teBim&e, by definition of botly and§,
we have for allj in V,, Ej <yj, we obtain a contradiction with the existencejah V, such that
& #VY;-

Conversely, suppose now thdt = 0. Then, the value of the max-flow is st@jevﬁj, and
the value of the min-cut i& > geVy No- Using again the max-flow/min-cut theorem, we have that

Y jeve & = A T gev, Ng- Moreover, by definition of, we also havey joy, &; < ¥ jev, Vi <A S gev, No:
leading to a contradiction with the existencejdh V, satisfyingg; # y;. We remind the reader of

the fact that such @ eV, exists since the cut is only computed when the current ewifnis not
optimal yet. This proof holds for any graph that is equivaterthe canonical one. |

After proving the convergence, we prove that the algoriteroarrect with the next proposition.

Proposition 2 (Correctness of Algorithm 1)
Algorithm 1 solves the proximal problem of Eq. (4).

Proof. For a group structure, we first prove the correctness of our algorithm if the grapédu
is its associated canonical graph that we de@ate- (Vo, Eo,s,t). We proceed by induction on the
number of nodes of the graph. The induction hypothes(g) is the following:

For all canonical graphs G= (V =W, UVy,E,s t) associated with a group structurgy with
weights(ng)geg, such thatV| <k, comput eFl ow(V, E) solves the following optimization prob-
lem:

1
min “(uj— ¥ E9)? st Vg eV,
;u 2 g;gr J

(E?)iGVu,gEVgr i

Z g <Mg and&{=0,vj¢g (16)

JEVY

Sincegy, = ¢, itis sufficient to show that (|Vp|) to prove the proposition.

We initialize the induction by (2), corresponding to the simplest canonical graph, for which
[Vgr| = [Vu| = 1). Simple algebra shows that(2) is indeed correct.

We now suppose that (K') is true for allk’ < k and consider a grap8 = (V,E,s;t), [V| =k.
The first step of the algorithm computes the varia(lsyljejevu by a projection on thé;-ball. This is
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itself an instance of the dual formulation of Eqg. (6) in a sienpase, with one group containing all
variables. We can therefore use Lemma 3 to characterizeptivaality of (yj) jev,, Which yields

Y jev, (Uj —Vj)yj = (maxjevu |uj —Vj|) 2ievYj andijevuyj :}\ZQEVang, (17)
or uj—y; =0, VjeV,.

The algorithm then computes a max-flow, using the scalaes capacities, and we now have two
possible situations:

1. If & =y, for all j in\, the algorithm stops; we writer; = uj —§&; for j in \, and using
Eg. (17), we obtain

T jev, Wi&j = (MaXey, Wil) Tjev,&j and 3 jev, & = A S gevy Nos (18)
or wj =0, VjeW.

We can rewrite the condition above as

WJ'E? Z (max|w;|) ;Eg
gggrlgg Iy

Since all the quantities in the previous sum are positivie,dan only hold if for allg € Vg,
w;&] = (maxiw;|) Z &.
JEVU J 1&Vu JEVu J

Moreover, by definition of the max flow and the optimality cdimhs, we have

Vg € Vyr, &9 <Ang, and E =A Ng;
jez/u J J; : gE€Vgr

which leads to

By Lemma 3, we have shown that the problem (16) is solved.

2. Let us now consider the case where there exist3/, such than #Y;. The algorithm splits
the vertex seV into two partsV*™ andV—, which we have proven to be non-empty in the
proof of Proposition 1. The next step of the algorithm rensoaiedges betweeni™ andV
(see Figure 7). Processitfg*,E™) and(V~,E~) independently, it updates the value of the
flow matrix E?, j €V, 9 € Vyr, and the corresponding flow vectfp[, j €. As forV, we
denote by,” £V NV, Vi £V NV andVg £V NV, Vg £V NV

Then, we notice thafv™,E™,s;t) and(V~,E~,s t) are respective canonical graphs for the
group structuregy+ = {gNV," | g € Vg }, andgy- = {gNV, | g € Vyr}-

Writing w;j = u; —Ej for j in \{, and using the induction hypotheseg|V*|) and# ([V~|),

we now have the following optimality conditions derivingfn Lemma 3 applied on Eq. (16)
respectively for the graph&*,E™) and(V—,E"):

wEy = Iwgllo g8 and 3jcg®f =Ang, g

YgE Vg g £ 9NV, { or Wy — 0,
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and
Tz 9 9
- o & - Wg/Eg/ = ||Wg’||°° Xjeg’zj and Zjeg’zj :)\ng,

Vg€ Vg, 0 =aNV, { or wy — 0. (20)
We will now combine Eq. (19) and Eqg. (20) into optimality caiwhs for Eq. (16). We first
notice thatgN V- = g since there are no arcs betweén andV~ in E (see the properties
of the cuts discussed before this proposition). It is tteeepossible to replacg by g in
Eqg. (19). We will show that it is possible to do the same in E)(so that combining these

two equations yield the optimality conditions of Eq. (16).

More precisely, we will show that for a§ € Vg and j € gNV;/", [wj| < max gy [wil, in
which casey’ can be replaced by in Eg. (20). This result is relatively intuitive(s,V ™) and
(V~,t) being an(s,t)-cut, all arcs betweesandV ~ are saturated, while there are unsaturated
arcs betweesandV *; one therefore expects the residua)lsrf j to decrease on thé™ side,
while increasing on th¥ ~ side. The proof is nonetheless a bit technical.

Let us show first that for aly in Vg, [[wgll,, < maxey, |uj —y;|- We split the seV* into
disjoint parts:

Var " £ (g€ Vy St [wgl, < mau; —y, ).
Vit E{jeV) st 3gevy™, jegl,
Vor = Vgr \Vg " = {9V st [wll, > maxuj —y;[},

Vu+7 = Vu+ \Vu++-

As previously, we denoté ™ £ V; UV~ andV T £V UV, We want to show that
VgJ;‘ is necessarily empty. We reason by contradiction and asﬁumtl‘égt‘ 0.

According to the definition of the different sets above, weasle that no arcs are going from
VTt toVT', thatis, for allgin Vg+r+, gnV, ~ = @. We observe as well that the flow from
Vgr~ toV"* is the null flow, because optimality conditions (19) implytifor a groupg only
nodesj € g such thatv; = ||wg]|. receive some flow, which excludes node¥jh" provided
VgT‘ = @; Combining 'Fh?s fact and the inequali%ev& Mg > Y jev: Y (Which is a direct
consequence of the minimufg t)-cut), we have as well

z Ang > Z Yi-

geVgr ™ jevy

LetjeV,,if EJ- # 0 then for some € Vg~ such thatj receives some flow frorg, which

from the optimality conditions (19) implie&/j = ||wg|l.; by definition of Vg ~, [[Wglle >
uj—y;. But since at the optimumy; = uj —&;, this implies tha; <y;, and in turn that

Yjevi & =AY geyy Ng- Finally,

AY = S &< Yy,

9V jewd g0 Jeu

and this is a contradiction.
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We now have that for alj in Vg, [|wg||,, < max;ey, |uj —y;|. The proof showing that for agj
in Vg, [[Wgll,, > maXxey, [uj —Y;l, uses the same kind of decomposition ¥or, and follows
along similar arguments. We will therefore not detail it.

To summarize, we have shown that for gl Vg, and j € gNVy", [wj| < max gy (Wil
Since there is no flow fronv ~ to VT, i.e., E? =0forgin Vg‘, and j in V,", we can now
replace the definition af in Eq. (20) byg £ gnV,, the combination of Eq. (19) and Eq. (20)
gives us optimality conditions for Eq. (16).

The proposition being proved for the canonical graph, werakit now for an equivalent graph
in the sense of Lemma 2. First, we observe that the algorittmesdhe same values gffor two
equivalent graphs. Then, it is easy to see that the V@lgieen by the max-flow, and the chosen
(s,t)-cut is the same, which is enough to conclude that the algorjterforms the same steps for
two equivalent graphs. [ |

B.2 Computation of the Dual Norm Q*

As for the proximal operator, the computation of dual ndeican itself be shown to solve another
network flow problem, based on the following variationalnfimdation, which extends a previous
result from Jenatton et al. (2009):

Lemma 4 (Dual formulation of the dual-norm Q*.)
Letk € RP. We have

Q'(k)= min 1 st Y &=k andvgeg, €% <ng with & =0ifj¢g.

EeRPXIS] TeR g

Proof. By definition of Q*(k), we have

By introducing the primal variablegog)ges € RI9!, we can rewrite the previous maximization
problem as
Q*(kK)= max K'z, st VYgeg, ||zlo <ag,
(0= max 6. |1zg]l < ag
with the additional g | conic constraintg|zg|l» < ag. This primal problem is convex and satisfies
Slater’s conditions for generalized conic inequalitiebjal implies that strong duality holds (Boyd

and Vandenberghe, 2004). We now consider the Lagrangidefined as
ag\ ' /Y
£(2,0g,T,Yg,8) =K' z+T(1— Y ngtg) + ¥ <Zg> <Eg>,
geg gcg g g

with the dual variableg, (Yg)geg,&} € R, xRI9IxRP*I6] such that foralg e 6, &) =0if j ¢ g
and||€%||1 < yg. The dual function is obtained by taking the derivativescofvith respect to the
primal variablesz and(ag)ge; and equating them to zero, which leads to

Vi€{l....,p}, Kj+3gesl) =0
Vgeg, Tg-yy =0
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After simplifying the Lagrangian and flipping the sign&fthe dual problem then reduces to

min T Vje{la'-prKJZZQGQE? andE?ZOif j¢g,
£eRPXI6) TeR | Vge g, €% < g,

which is the desired result. |
We now prove that Algorithm 2 is correct.

Proposition 3 (Convergence and correctness of Algorithm 2)

Algorithm 2 computes the value of the dual norm of Eq. (9) imigefiand polynomial number of
operations.

Proof. The convergence of the algorithm only requires to show thatcardinality ofV in the
different calls of the functiormonput eFl ow strictly decreases. Similar arguments to those used in
the proof of Proposition 1 can show that each part of the @utsV ) are both non-empty. The
algorithm thus requires a finite number of calls to a max-fligoathm and converges in a finite
and polynomial number of operations.

Let us now prove that the algorithm is correct for a canongralph. We proceed again by
induction on the number of nodes of the graph. More pregisedyconsider the induction hypothesis
#'(k) defined as:

for all canonical graphs G= (V,E, s,t) associated with a group structugg andsuch thatfV| <k,
dual Nor mAux (V =V, UVy, E) solves the following optimization problem:
minT s.t. Vj€V,,Kj = Z &9, andvg € Vg, Z/ gl <tng with & =0if j¢g.  (21)
3 9€Vgr VY
We first initialize the induction by (2) (i.e., with the simplest canonical graph, such tNgt| =
[Vu| = 1). Simple algebra shows that(2) is indeed correct.

We next consider a canonical graBh= (V, E, s,t) such thatV | =k, and suppose that’(k— 1)
is true. After the max-flow step, we have two possible caselésttuss:

1. If Ej =y; for all j in'\, the algorithm stops. We know that any scalasuch that the con-
straints of Eq. (21) are all satisfied necessarily verifigs,, Tng > 3 jcy, Kj. We have indeed
thatzge\,gr g is the value of arfs,t)-cut in the graph, ang ., K; is the value of the max-
flow, and the inequality follows from the max-flow/min-cutettrem (Ford and Fulkerson,
1956). This gives a lower-bound anSince this bound is reachetis necessarily optimal.

2. We now consider the case where there exjsiis \, such thatij # Kj, meaning that for
the given value of, the constraint set of Eq. (21) is not feasible §oand that the value af
should necessarily increase. The algorithm splits thexesed/ into two non-empty parfg *
andV ~— and we remark that there are no arcs going fkbhtoV —, and no flow going fronv —
toV*. Since the arcs going fromto V~ are saturated, we have tMBdev, TNg < Yjevy Kj-
Let us now consider* the solution of Eq. (21). Using the induction hypothegi§|V ~|), the
algorithm computes a new valuéthat solves Eq. (21) when replacikgby V— and this new
value satisfies the following inequalityy.,; TNg > ¥ jey; Kj- The value oft” has therefore
increased and the updated fl§wmow satisfies the constraints of Eq. (21) and therefbret*.
Since there are no arcs going fraf toV —, t* is feasible for Eq. (21) when replacingby
V™~ and we have that* > 1/ and thermt’ = 1*.

33



MAIRAL , JENATTON, OBOZINSKI AND BACH

To prove that the result holds for any equivalent graph,lainsirguments to those used in the proof
of Proposition 1 can be exploited, showing that the algoritomputes the same valuestodnd
same(s,t)-cuts at each step. [

Appendix C. Algorithm FISTA with duality gap

In this section, we describe in details the algorithm FISBad¢k and Teboulle, 2009) when applied
to solve problem (2), with a duality gap as the stopping Gdte The algorithm, as implemented in
the experiments, is summarized in Algorithm 3.

Without loss of generality, let us assume we are looking fodets of the formXw, for some
matrix X € R"*P (typically, a linear model wherX is the design matrix composedmbbservations
in RP). Thus, we can consider the following primal problem

min f(Xw) +AQ(w), (22)

weRP

in place of problem (2). Based on Fenchel duality argumeBdsviein and Lewis, 2006),
f(Xw) +AQ(W) + f*(—k), for w € RP k € R"andQ*(X k) <A,

is a duality gap for problem (22), wher (k) £ sup,[z'k — f(2)] is the Fenchel conjugate of
f (Borwein and Lewis, 2006). Given a primal variale a good dual candidate can be obtained

by looking at the conditions that have to be satisfied by the (wa k) at optimality (Borwein and

Lewis, 2006). In particular, the dual variabies chosen to be

K =—p 'Of (Xw), with p 2 max{A~1Q* (X 'Of (Xw)), 1}.

Consequently, computing the duality gap requires evadgatie dual normQ*, as explained in
Algorithm 2. We sum up the computation of the duality gap ig@kithm 3. Moreover, we refer to
the proximal operator associated wit® as proxq.2’

In our experiment, we choose the line-search paranveiebe equal to b.

Appendix D. Speed comparison of Algorithm 1 with parametricmax-flow algorithms

As shown by Hochbaum and Hong (1995), min-cost flow probleamsl in particular, the dual
problem of (4), can be reduced to a specfarametric max-flowproblem. We thus compare our
approach (ProxFlow) with the efficient parametric max-fldgoathm proposed by Gallo et al.
(1989) and a simplified version of the latter proposed by Bibeand Goldberg (2006). We refer
to these two algorithms as GGT and SIMP respectively. Thetlreark is established on the same
datasets as those already used in the experimental settiba paper, namely: (1) three datasets
built from overcomplete bases of discrete cosine transSqidCT), with respectively 10 10° and
10° variables, and (2) images used for the background suliiratisk, composed of 57600 pixels.
For GGT and SIMP, we use thpar aF software which is &++ parametric max-flow implementa-
tion available abt t p: / / www. avgl ab. conf andrew sof t. ht m . Experiments were conducted on

27. As a brief reminder, it is defined as the function that nthpsvectoru in RP to the (unique, by strong convexity)
solution of Eq. (4).
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Algorithm 3 FISTA procedure to solve problem (22).

=

Inputs: initial wg) € RP, Q, A > 0, ggap> 0 (precision for the duality gap).

2: Parameters v > 1,Lg > 0.

3: Outputs: solutionw.

4: Initialization : Y1) =W, t1= 1, k=1.

5: while { conput eDual i t yGap(W_1)) > €gap} dO

6: Find the smallest integex; >0 such that )

7. F(proxag (Ya)) < F(¥i) + 8O f (Vo) + 511800 13,
8: with £ £ LyvS andA g £ vy —proXg (Yo )-

9: Lg < Lk 1v¥.

100 Wk < ProXpg) (Yik))-

11t < (144/1+12)/2.

120 Y1) < Wi+ E(W(k) —Wk_1))-

tya
13: k< k+1.
14: end while
15: Return: w = w_1).

Procedureconput eDual i t yGap(w)
1 K —p 1Of(Xw), with p £ max{A~1Q* (X "Of (Xw)), 1}.
2: Return: f(Xw)+AQ(w) + f*(—K).

a single-core 2.33 Ghz. We report in the following table therage execution time in seconds of
each algorithm for 5 runs, as well as the statistics of theespoonding problems:

[ Number of variable | 10000 | 100000] 1000000 | 57600 |

V| 20000 | 200000 2000000 | 57600

|E| 110000| 500000| 11000000| 579632
ProxFlow (in sec.) 0.4 31 1130 17
GGT (in sec.) 2.4 26.0 5250 16.7
SIMP (in sec.) 12 131 2840 8.31

Although we provide the speed comparison for a single valugthe one used in the corresponding
experiments of the paper), we observed that our approadistently outperforms GGT and SIMP
for values ofA corresponding to different regularization regimes.
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