Unlearning in the BCM learning rule for plastic self-organization in a multi-modal architecture

Mathieu Lefort 1 Yann Boniface 1 Bernard Girau 1
1 CORTEX - Neuromimetic intelligence
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : An agent moving in a real environment perceives it by numerous noisy sensors which provide some high dimensionality data with unknown topology. In order to interact in this complex and changing environment, according to the active perception theory, the agent needs to learn the correlations between its actions and the changes they induce in the environment. In the perspective of a bio-inspired architecture for the learning of multi-modal correlations, this article focuses on the ability to forget some previously learned selectivity in a model of perceptive map which spatially codes the sensor data. This perceptive map combines the BCM (Bienenstock Cooper Munro) learning rule, which raises a selectivity to a stimulus, with the neural field (NF) theory, which provides spatial constraints to self-organize the selectivities at the map level. The introduction of an unlearning term in the BCM learning rule improves the BCM-NF coupling by providing plasticity to the self-organization.
Type de document :
Communication dans un congrès
International conference on Artificial Neural Networks - ICANN 2011, Jun 2011, Espoo, Finland. 2011
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00585672
Contributeur : Mathieu Lefort <>
Soumis le : mercredi 13 avril 2011 - 16:59:58
Dernière modification le : jeudi 11 janvier 2018 - 06:19:48
Document(s) archivé(s) le : jeudi 8 novembre 2012 - 16:25:10

Fichier

article.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00585672, version 1

Collections

Citation

Mathieu Lefort, Yann Boniface, Bernard Girau. Unlearning in the BCM learning rule for plastic self-organization in a multi-modal architecture. International conference on Artificial Neural Networks - ICANN 2011, Jun 2011, Espoo, Finland. 2011. 〈inria-00585672〉

Partager

Métriques

Consultations de la notice

493

Téléchargements de fichiers

151