Spherical Polar Fourier EAP and ODF Reconstruction via Compressed Sensing in Diffusion MRI

Abstract : In diffusion magnetic resonance imaging (dMRI), the Ensemble Average Propagator (EAP), also known as the propagator, describes completely the water molecule diffusion in the brain white matter without any prior knowledge about the tissue shape. In this paper, we describe a new and efficient method to accurately reconstruct the EAP in terms of the Spherical Polar Fourier (SPF) basis from very few diffusion weighted magnetic resonance images (DW-MRI). This approach nicely exploits the duality between SPF and a closely related basis in which one can respectively represent the EAP and the diffusion signal using the same coefficients, and efficiently combines it to the recent acquisition and reconstruction technique called Compressed Sensing (CS). Our work provides an efficient analytical solution to estimate, from few measurements, the diffusion propagator at any radius. We also provide a new analytical solution to extract an important feature characterising the tissue microstructure: the Orientation Distribution Function (ODF). We illustrate and prove the effectiveness of our method in reconstructing the propagator and the ODF on both noisy multiple q-shell synthetic and phantom data.
Type de document :
Communication dans un congrès
ISBI, Mar 2011, Chicago, United States. 2011
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

Contributeur : Sylvain Merlet <>
Soumis le : mercredi 13 avril 2011 - 17:33:36
Dernière modification le : jeudi 11 janvier 2018 - 16:22:46
Document(s) archivé(s) le : jeudi 8 novembre 2012 - 16:25:17


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00585694, version 1



Sylvain Merlet, Jian Cheng, Aurobrata Ghosh, Rachid Deriche. Spherical Polar Fourier EAP and ODF Reconstruction via Compressed Sensing in Diffusion MRI. ISBI, Mar 2011, Chicago, United States. 2011. 〈inria-00585694〉



Consultations de la notice


Téléchargements de fichiers