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ABSTRACT
In diffusion magnetic resonance imaging (dMRI), the En-

semble Average Propagator (EAP), also known as the propa-
gator, describes completely the water molecule diffusion in
the brain white matter without any prior knowledge about
the tissue shape. In this paper, we describe a new and ef�-
cient method to accurately reconstruct the EAP in terms of the
Spherical Polar Fourier (SPF) basis from very few diffusion
weighted magnetic resonance images (DW-MRI). This ap-
proach nicely exploits the duality between SPF and a closely
related basis in which one can respectively represent the EAP
and the diffusion signal using the same coef�cients, and ef�-
ciently combines it to the recent acquisition and reconstruc-
tion technique called Compressed Sensing (CS). Our work
provides an ef�cient analytical solution to estimate, from few
measurements, the diffusion propagator at any radius. We
also provide a new analytical solution to extract an impor-
tant feature characterising the tissue microstructure: the Ori-
entation Distribution Function (ODF). We illustrate and prove
the effectiveness of our method in reconstructing the propa-
gator and the ODF on both noisy multiple q-shell synthetic
and phantom data.

Index Terms— Diffusion MRI, Compressed sensing, En-
semble Average Propagator recovery, Propagator, Orientation
Distribution Function, Spherical Polar Fourier.

1. INTRODUCTION

Diffusion MRI (dMRI) is a recent Magnetic Resonance Imag-
ing technique introduced by [1, 2, 3]. It enables the quan-
ti�cation of water diffusion in�uenced by biological tissues.
Hence, dMRI has become an established research tool in the
investigation of tissue structure and orientation.

In 1965, [4] introduced the pulsed gradient spin-echo
(PGSE) sequence. It allows the quanti�cation of the diffusion
by estimating the displacement of particles from the phase
change that occurs during the acquisition process. When the
gradient pulses are suf�ciently short, [4] also showed that the
measured signalE (q), after normalization, is written as the
Fourier transform of the EAPP(R )

E (q) =
Z

P (R ) exp( � 2�i q:R )dR ; (1)

whereq andR are both 3D-vectors that respectively repre-
sent the effective gradient direction and the displacement di-
rection.

Many models, that require several DW-MRI, enable the
EAP estimation. Diffusion Tensor Imaging (DTI) model re-
quires at least 6 DW-MRIs plus an additional unweighted im-
age. However, the Gaussian assumption, in DTI, is an over-
simpli�cation of the diffusion of water molecules in the brain
and thus has some limitations. Other models, the High An-
gular Resolution Diffusion Imaging (HARDI) models, have
been proposed to infer the diffusion of water molecules along
several directions. One of the HARDI techniques known as
the Q-ball imaging (QBI) [5, 6] consists of sampling the q-
space on a single sphere in several gradient directions in or-
der to estimate the ODF. The ODF [5, 6, 7, 8] is a spheri-
cal function that contains the angular information of the dif-
fusion process. [6] found an elegant analytical solution by
modelling the ODF using Spherical Harmonics (SH). More
recently, [8] used the spherical ridgelets to approximate the
ODF. An other model, the diffusion spectrum imaging (DSI),
was developped to estimate the EAP by taking samples in
the whole q-space. It aims at completely describing the EAP
without any prior knowledge about the tissue shape. How-
ever, it is computationally expensive if we want to accurately
reconstruct the EAP. Some “cheaper” techniques were devel-
oped to perform a complete (radial and angular part) estima-
tion of the EAP from measurements taken on one or several
shells. For instance, DOT [9], estimate the EAP using sam-
ples acquired on one shell. However, [9] assumes a mono-
exponential decay of the diffusion signal, which is not veri-
�ed all the time. Reference [9] proposes an extent to a multi-
exponential decay model but is impractical because of the
large number of samples required to estimate the radial part.
Reference [10] suggests , with DPI, to use the general solu-
tion of the Laplace's equation to model both the radial and
angular part of the EAP. In [11, 12], the authors approximate
the attenuation signal in the SPF basis and extract different



EAP features from this representation.
These techniques still need many measurements so we

give attention on Compressed Sensing (CS), a recent tech-
nique to accurately reconstruct signals from under sampled
measurements. CS, multiple shells HARDI and EAP play
a central role in this work which is focused on the develop-
ment of a CS based method for accelerating the acquisition
by signi�cantly reducing the number of measurements. CS
has already been exploited in dMRI. For instance, [13] recon-
struct the EAP in a numerical fashion with much less mea-
surements and better results than DSI. [14] also use CS to
model the ODF in terms of spherical ridgelet from highly re-
duced HARDI samples.

In this paper we describe a CS based EAP reconstruction
from multiple shell acquisitions using the reciprocal relation
between the SPF basis in real space and its dual basis in q-
space. Our method signi�cantly undersamples the q-space in
a random fashion and then reconstructs the EAP by solving a
convex optimization problem. The �rst section aims at pre-
senting the background theory related to this work, i.e. the
CS theory and the mathematical framework for the SPF basis.
Then we provide the solution to estimate the EAP in SPF ba-
sis at any radiusR. We also propose to analytically extract the
ODF feature. The last section presents results on both noisy
synthetic data and phantom data.

2. BACKGROUND THEORY

2.1. Compressed Sensing

The Compressed Sensing acquisition process has been prov-
ing useful in recovering Magnetic resonance (MR) images by
signi�cantly undersampling their k-spaces [15] [16] [17] [18].
David Donoho described a complete mathematical framework
[19] and published a patent [20] of CS theory.

Suppose our signal of interest is a vectorx 2 R m and we
are able to acquire an observation representative ofx. Usu-
ally, the way the measurement is done is constrained by the
acquisition process speci�c for an application. In MR imag-
ing, for instance, the samples are taken from the k-space,
which represents the Fourier transform of a given MR im-
age. In most applications, we need to decrease time in captur-
ing data and, besides technological advance, the best way to
achieve our goal is to decrease as most as possible the number
of acquisitions. Lety 2 R n , with n << m , be the measure-
ment vector given by the sensor of a given application.y
obeys this equation:

y = Ax + z (2)

WhereA 2 R n � m is the measurement matrix, so called
the CS matrix, andz 2 R n represents the acquisition noise.
Our goal is to �ndx given a measurey . Sincey has less en-
tries thanx, this ill-posed problem cannot be resolved without
any prior knowledge about the signal to recover.

This technique is, thus, based on the data sparsity or
compressibility, i.e. that all the signal information can be
contained in few signal coef�cients. Conceptually, the CS
method follows this idea : if the underlying signal is entirely
described by a small number of coef�cients then it is not nec-
essary to acquire every data sample. Hence, a fundamental
condition in the Compressed Sensing theory is that the signal
admits a sparse representation. Many transforms are known
to make a signal sparse. For instance we can cite the Discrete
Wavelet Transform (DWT) or the Discrete Cosine Transform
(DCT) respectively used in JPEG2000 and JPEG standard to
compress natural images. A simple gradient transform is also
known to compress piecewise constant signals. Suppose, we
know an orthonormal basisB of R m adequate to represents
x. Then x can be modelled as a linear combination of the
basis functionb 2 B , i.e. x =

P
b2 B < x; b > b . The

transform coef�cientsc = < x; b > form a vectorc 2 R n c

describingx with respect to the basis B.c is said sparse, or
compressible, if the most important coef�cients in a chosen
sparse representation are much more smaller, in number, than
nc.

Another important point for CS is the degree of incoherent
aliasing that appears after applying a sparse transform. [15]
pointed out that the data acquisition scheme has to result in
incoherent artefacts in the chosen sparse domain. A , usually
called the CS matrix, re�ects the way the measures are taken.
In [15], since the measurements are a sub-set of the k-space
samples, the CS matrix is an undersampled Fourier Operator.
The CS matrix can be represented as follows :

A = UD; (3)

whereD is the matrix representation of a digital domain, as
the complete Fourier operator when the measurements are k-
space samples.D can take many forms but, usually, they are
restrained by the measurement sensor.

The matrixU represents the way the acquisition is done.
If the samples are taken in a random fashion,U can have its
entries generated by random numbers following a speci�c dis-
tribution. [20] tells about random projectors, i.e. matrices
whose rows are orthogonalized by a standard procedure such
that the Gram-Schmidt procedure or partial Hadamard matri-
ces. In most cases,U is part of a known transform and is not
de�ned explicitly.

The CS reconstruction is based on al1 minimization
scheme promoting the signal sparsity. Considering the signal
admits a sparse representation with respect to an orthonormal
basisB , we can constrain most of the transform coef�cients
f ci = < x; b i >; b i 2 B; i = 1 ; :::; ncg to be zero by mini-
mizing the number of non-zero elements, that is thel0 norm
de�ned by kck0 =

P n c
i =1 c0

i . Nevertheless, minimizing the
l0 norm is a NP-complete problem and requires combinato-
rial optimization to approximate it, so we minimize thel1
norm de�ned bykck1 =

P n c
i =1 jci j [15]. l1 norm is just the



sum of the absolute values of every element. The solution
x of our problem is given by solving the following convex
optimization problem :

argmin x J (x ) = kAx � y k2
2 + � kck1 : (4)

The �rst term is the data consistency constraint,kck1 is the
sparsity constraint.� is the Lagrange parameter that de�nes
the con�dence we put in the measured signaly . The data con-
sistency constraint enables the solution to remain close to the
raw data acquisition, whereas the minimization of the second
term promotes sparsity. In short, this mathematical problem
searches for the sparsest solution while remaining close to the
acquired data.

2.2. The Spherical Polar Fourier basis

For three-dimensional signal described in spherical coordi-
nate(r; �; ' ), it is useful to �nd a decomposition into func-
tions that have appropriate radial and angular structure. Such
a basis can be separated in two parts as

	( r; �; ' ) = R(r )
( �; ' ); (5)

whereR and
 respectively stand for the radial and angular
part of the basis

We choose to represent the angular structure in term of the
SH basis. These functions have been of great interest in esti-
mating spherical functions [21, 6]. In QBI [6], only 15 SH are
usually suf�cient to correctly estimate the �bres orientation.
Thus, the SH basis is a good candidate to sparsely represent
the angular part of our signal. The complex spherical harmon-
ics are the solution of the angular part of the Laplace equation
in spherical coordinates and are expressed as

Cm
` (�; ' ) =

s
(2` + 1)

4�

(` � m)!

(` + m)!
P m

` (cos � ) eim' ; (6)

where` 2 N is the spherical harmonic order and� l � m � l
the degree. Eq. 6 shows a complex function. However the
EAP is assumed to be real and antipodally symmetric, so we
use a modi�ed version of this basis [6]. Forl = 0 ; 2; 4; :::; L
andm = � l; :::; 0; :::; l

Y m
` =

8
>><

>>:

C0
` if m = 0

1p
2

�
Cm

` + ( � 1)m C � m
`

�
if m > 0

1
i
p

2

�
C � m

` � (� 1)m Cm
`

�
if m < 0:

: (7)

The family of functionsY m
` form a real and orthonormal

basis. The number of spherical harmonics for a given orderL
is J = (1 =2)(L + 1)( L + 2) .

Another transform, the spherical ridgelet transform [8,
14], appears promising in sparsely representing angular struc-
tures. About, radial decomposition of the three dimensional
EAP, we use an orthonormal basis in spherical coordinates

known as the Gauss-Laguerre (GL) functions. The GL basis
function of ordern is expressed as

Rn (r ) =
�

2n!

� 3=2 �( n + 3 =2)

� 1=2

exp(
� r 2

2�
)L 1=2

n (
r 2

�
); (8)

where� is a scale factor andL 1=2
n is the generalized Laguerre

polynomial of ordern. [11] report that the GL basis is ap-
propriate to sparsely represent the radial part of the Gaussian-
like patterns. It can describe multiple con�gurations of the
radial diffusion including isotropy and crossing �bres aspects
as well as the multiple compartments pro�le.

The complete approximation of the diffusion propagator
(radial and angular part) is achieved by means of the so called
Spherical Polar Fourier (SPF) basis functions. This basis is
the combination of the angular functionsY l

m and the radial
functionsRn expressed as

	 n`m (r; �; � ) = Rn (r )Y `
m (�; � ); (9)

3. THE METHOD

3.1. Analytical EAP reconstruction

In this section, we describe a method to accurately reconstruct
the EAP from randomly undersampled measurements. The
EAP can be estimated by a truncated linear combination of
the SPF basis functions	 n`m

P (r; �; � ) =
NX

n =0

LX

` =0

`X

m = � `

cn`m 	 n`m (r; �; � ); (10)

wherecn`m are the SPF transform coef�cients. For a given
SH orderL and a GL orderN , the total number of SPF coef-
�cients is nc = (1 =2)(N + 1)( L + 1)( L + 2) .

Supposenq is the number of measurement samples,P 2
R n q a vector representing the EAP,c 2 R n c a vector of
the SPF coef�cientscn`m and	 2 R n q � n c the matrix con-
structed with the SPF basis functions

	 =

0

B
@

	 n`m (r 1 ; � 1 ; � 1 ) � � � 	 NLL (r 1 ; � 1 ; � 1 )
...

. . .
...

	 n`m (r n q ; � n q ; � n q ) � � � 	 NLL (r n q ; � n q ; � n q )

1

C
A ; (11)

We can write equation 10 as an overdetermined linear sys-
tem

P = 	c : (12)

In order to �nd c, we solve the convex optimization prob-
lem, speci�ed in equation 4 using the SPF basis as the sparse
transform, i.e. the coef�cients arecn`m = < P; 	 n`m > .
However, we don't need to explicitly compute these coef�-
cients. Moreover, in Eq. 1, we see that the signal attenuation,
after normalizationE, is the Fourier transform of the EAP



P, i.e. E = F (P). Hence, in the SPF formalism, we have
E = F (	c ). We callEu 2 R n u the randomly acquired at-
tenuation signal,nu being the number of undersampled sam-
ples. Fu is the undersampled Fourier transform where only
the corresponding acquired coef�cients remain after applying
the Fourier transform. After rearranging equation4, we ob-
tain a new functional to minimize

argmin cJ (c) = kF u (	 c) � Eu k2
2 + � kck1 : (13)

Reference [13] reviews some results of CS-based recon-
struction of the EAP when no sparse transform is applied.
Note that modelling the propagator in SPF basis and then
computing its Fourier transform is computationally expen-
sive, especially in an iterative reconstruction scheme. There-
fore, it would be of great interest to replace these two opera-
tions with a closed form solution.

In [12] the authors proved, after estimating the attenu-
ation signal in the SPF family of functions, that it is pos-
sible to model the propagator in a dual Fourier basis using
the same transform coef�cients. In other words, this method
can be resumed as follows : letX be a signal in spherical
coordinates anda the coef�cients ofX with respect to the
SPF basis. Now, we consider the inverse Fourier transform
x = F � 1(X ). Reference [12] gives a SPF-dual (dSPF) basis
in which x can be modelled using the same coef�cientsa. It
is an elegant closed form to compute an EAP when the cor-
responding diffusion signal is described by SPF coef�cients.
We cannot use directely this relation in our problem. How-
ever, we will see in the next paragraph how to take advantage
of this relation.

Let us focus on Eq. 1 , i.e.E(q) = F (P(R )) . Because
the attenuation signal is antipodally symmetric, i.e. E(q)=E(-
q), Eq. 1 is equivalent to

E (q) =
Z

P (r ) exp(2 �i q:R )dR ; (14)

i.e. E(q) = F � 1(P(R )) = F (P(r )) , whereq andR are
both 3D-vectors that respectively represent the effective gra-
dient direction and the displacement direction.

Hence the same relation as in [12] holds while modelling
the EAP with respect to the SPF basis. Now, suppose we have
the SPF coef�cientsf cn`m ; n = 0 ; :::; N; l = 0 ; :::; L; m =
� l; :::; l g used to modelP, the corresponding attenuation sig-
nal can be reconstructed, in spherical coordinates, in the SPFd
family of functions,f � n`m ; n = 0 ; :::; N; l = 0 ; :::; L; m =
� l; :::; l g as

E (q; �; ' ) = F � 1
� P N

n =0
P L

` =0
P `

m = � ` cn`m 	 n`m (r; �; � )
�

= F
� P N

n =0
P L

` =0
P `

m = � ` cn`m 	 n`m (r; �; � )
�

=
P N

n =0
P L

` =0
P `

m = � ` cn`m � n`m (q; �; � );
(15)

where F and F � 1 are respectively the direct and inverse

Fourier transform,q = jqj is the norm of the effective gra-
dient q in q-space and� , ' the direction angles. The SPFd
family of function are expressed, forn = 0 ; :::; N; l =
0; :::; L; m = � l; :::; l , as

� n`m (q; �; � ) = 4( � 1)`= 2 � `= 2+3 =2 � ` +3 =2q`

�( l + 3 =2)
 (�; q )Y `

m (�; � ); (16)

with

 (�; q ) =

"
2` n !

�
3
2 �( n + 3

2 )

# 1
2 P n

k =0
( � 1) k

k !

� n + 1
2

n � k

�
2k � � �

� � � �
�

`
2 + k + 3

2

�
1F 1

�
2k + l +3

2 ; l + 3
2 ; � 2(�r )2 �

�
;

(17)

We can write equation 15 as an over determined linear
system

E = F � 1 (	c ) = F (	c ) = �c : (18)

whereE 2 R n q is a vector representing the attenuation sig-
nal, c 2 R n c the vector of the SPF coef�cientscn`m and
� 2 R n q � n c matrix constructed with the SPFd basis func-
tions in the same manner as described in (11).

Letting � u 2 R n u � n c be the randomly undersampled
version of� operator, we can rewrite the problem described
in equation 13

argmin c J (c) = k� u c � E u k2
2 + � kck1 : (19)

Remark that the problem no longer needs the computation of
a Fourier transform. Instead, we remplaced it by a simple
matrix multiplication. Eq. (19) searches for the EAP coef�-
cients with respect to the SPF basis, i.e. we can compute a
continuous version of the true propagator. Using the same co-
ef�cients, we can as well model the attenuation signal with re-
spect to the SPFd basis functions. The next section shows an
analytical solution to reconstruct the ODF in terms of spheri-
cal harmonics.

3.2. ODF feature extraction

The orientation distribution function is a function on the unit
sphere describing the probability averaged over the voxel that
a particle will diffuse into a given solid angle. The diffusion
ODF contains the full angular information of the EAP and is
de�ned as [7, 22],

	( �; � ) =
Z 1

0
P (r; �; � )r 2dr; (20)

where (�; � ) obey physics convention (� 2 [0; � ]; � 2
[0; 2� ]).

Using
R1

0 exp(� sx)x � L �
n (x)dx = �( � + n +1)( s� 1) n

n !s� + n +1

[12], we prove that one can rewrite equation 20 in the SPF
formalism as,



	( �; � ) =
LX

l =0

lX

m = � l

 
NX

n =0

2(� 1)n cnlm

�
�( n + 3 =2)

n!

� !

Y m
l (�; � ):

(21)

This is an important formula allowing to analytically estimate
the ODF in terms of spherical harmonic functions. Due to the
lack of space, the derivation is omitted here.

4. EXPERIMENTATION

For each experiment, we construct the SPF dual basis with
N = 4 andL = 8 so as to obtain a sparse basis (the number
of coef�cients isnc = 225). Knowing the sampling coordi-
nates, the basis matrix can be computed of�ine. We solve the
problem by means of a Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA) [23], an iterative algorithm where each it-
eration involves a shrinkage step. We chose this algorithm be-
cause of its speed. In a Matlab implementation, the technique
proposed takes a few seconds (usually less than 0.25 seconds)
to reconstruct the vector of coef�cients for one voxel, on a In-
tel Core 2 Duo CPU at 2.8 GHz. Compare to [13], this tech-
nique signi�cantly shorten the reconstruction time by about
80 times. This is important when dealing with thousands of
voxel (And it is ussually the case). We evaluate� in such
a way that the �rst order function of GL basis �ts a typical
Gaussian based signalP(r ) = exp � r 2

4�D . For 4� 2� = 1 and
D = 0 :7e � 3mm2=s, we set� = D

2� 2 = 3 :5462e � 5 in all
experiments.

4.1. Synthetic data

We review the different potentialities of the proposed analyt-
ical solution on the reconstruction of synthetic data features
generated using a multi-tensor model. The normalized dif-
fusion signal at a shell withb = 4 � 2�q2 is thus described,
by F �bres, as E (u) =

P F
f =1 pf exp(� 4� 2 �q 2u T D f u) where

a �bre f is de�ned by a tensor matrixD f and weightpf .
q denotes the norm of the effective gradient andu is a uni-
tary vector in Cartesian coordinate. The analytical ground
truth of the EAP for any radius R is then given byP (Rr ) =
P F

f =1 pf
1p

(4 �� ) 3 j D f j
exp

�
� R 2 r T D � 1

f r

4�

�
with r a unitary vec-

tor in Cartesian coordinate. We can also check the ODF fea-
ture using solid angle closed form expression [7] , (r ) =
P F

f =1 pf
1

4� j D f j
1
2 ( r T D � 1

f r )
3
2

We reconstruct the ODF and the EAP pro�les at radius
R=12; 15; 18�m for three �bre con�gurations: one �bre,90�

and60� - crossing �bres. We choose a tensor matrix whose
eigenvalues are[0:3; 1:7; 0:3]e-3 mm2=sand rotate it accord-
ing to the �bre con�guration. For each con�guration, we add
Rician noise with SNR=25, 20 and15. The aim is to show
that it is still possible to reconstruct EAP features with very
few samples. Therefore, we randomly take80 measurements

Fig. 1. Synthetic data results with one �bre,90� and 60� -
crossing �bres con�gurations respectively from the top to the
bottom. We show from the left to the right : the estimated
ODF and the EAP pro�les at radiusR=12; 15; 18�m .

CS method L 2 regularization
SNR=25 one �bre (100:0%, 0:17� ) (100:0%, 0:34� )

90� - crossing �bres (95:3%, 2:46� ) (88:0%, 4:67� )
60� - crossing �bres (85:3%, 5:11� ) (84:7%, 6:47� )

SNR=20 one �bre (100:0%, 0:75� ) (100:0%, 0:84� )
90� - crossing �bres (90:0%, 3:20� ) (88:0%, 5:32� )
60� - crossing �bres (74:7%, 6:58� ) (75:0%, 6:59� )

SNR=15 one �bre (91:2%, 3:06� ) (100:0%, 2:79� )
90� - crossing �bres (81:1%, 6:10� ) (86:0%, 6:50� )
60� - crossing �bres (56:3%, 10:73� ) (62:7%, 9:47� )

Table 1. Percentage of correct number of detected maximum
and the mean of angular error on the estimated ODF

spread on 3 shells with b values1000; 2000; 3000s=mm2.
Random means several sampling schemes are possible so, we
selected it as follow : On 100 sampling schemes generated,
we kept the one that leads to the best results. We set� =0:01
when SNR=25and20, and� =0:015when SNR=15.

Some experiments with SNR=25 and 15 (�g. 1 ) showed
that our CS-based method works well in recovering angu-
lar information. Indeed, it is easy to detect maxima on the
ODF.We also see that EAP pro�les are well approximated
for one �bre and two90� - crossing �bres, especially with
SNR=25. With the60� - crossing �bres con�guration, the re-
construction still gives good results considering the amount
of noise and the fact we take only 80 samples.

A more thorough and quantitative evaluation is perform
on the ODF feature reconstruction. Table 1 presents the
percentage of correct number of detected maximum and the
mean of angular error of the estimated ODF on 1000 trials,
with our method and a least square method withl2 regular-



ization. In the latter technique, we regularly take 80 samples
and the same regularization parameters for the radial� N and
angular� L parts, i.e� N =� L =1e-8 when SNR=25 and 20,
and � N =� L =6e-8 when SNR=15. These results shows that
our method is better for SNR=25 and20 but doesn't outper-
form l2 regularization at low SNR. This is due to the different
effects that providel1 and l2 regularizations. l1 promotes
sparsity whereasl2 is known as a smoothing (so denoising)
regularization. In brief, our method accept a decrease of
the number of samples with better results than the classical
l2-norm method as long as the SNR remains higher than 15.

4.2. Phantom data

We prove the effectiveness of our method in reconstructing
the propagator on a phantom data . This phantom was used in
the �bres cup contest, at the MICCAI conference in London
in 2009, to benchmark tractography algorithms [24]. These
diffusion measurements, devoted to evaluate HARDI models,
are known to be especially dif�cult in recovering directional
information because of their low anisotropies. We have 192
attenuation signal samples equally spread on 3 shells with b-
values of 650, 1500, and 2000s=mm2. A �rst reconstruc-
tion is achieved after keeping all the coef�cients, i.e. 192,
and a second one after randomly considering only 80 sam-
ples along an uniform distribution in the entire data set. Note
that, in this way, each shell contains approximately the same
number of measurements, thus lower is the b-value and higher
is the sample density on the corresponding shell. Reference
[13] shows that this kind of behaviour improves numerical
reconstruction. For every experiment the regularization pa-
rameter is set to� = 0 :02. Figure 2 shows the experimental
results for the ODF estimation and the EAP values at a radius
R = 15�m . For each case, we focus our attention on a cross-
ing region (A andB on the �gure). Our CS-based reconstruc-
tion works well on this data even with 80 samples. Our goal
to highly reduce the number of measurements, while keep-
ing the important information about the diffusion, is achieved.
Note that the reconstruction works for a higher range of ra-
dius, however, due to the lack of space, we cannot show these
results.

5. CONCLUSION

In this paper, we have described a new and ef�cient compressed-
sensing based method to accurately reconstruct the EAP in
term of Spherical Polar Fourier functions from few diffu-
sion DW-MRI images. We provided an ef�cient solution to
estimate the EAP at any radiusR and proposed also an ana-
lytical solution to reconstruct the ODF function. We proved
the effectiveness of our method in reconstructing the EAP
and the ODF on both noisy multiple q-shell synthetic data
and phantom data. However, the results are sensitives to the
sampling scheme used for the acquisition so we are working

on ef�cient way to sample the diffusion.
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