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We consider nonlinear discrete time control systems
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with x(n) ∈ X, u(n) ∈ U , X, U arbitrary metric spaces

Problem: Optimal feedback stabilization via infinite horizon
optimal control:

For a running cost ℓ : X × U → R
+
0 penalizing the distance to

the desired equilibrium solve

minimize J∞(x, u) =
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Setup

We consider nonlinear discrete time control systems

x(n + 1) = f(x(n), u(n))

with x(n) ∈ X, u(n) ∈ U , X, U arbitrary metric spaces

Problem: Optimal feedback stabilization via infinite horizon
optimal control:

For a running cost ℓ : X × U → R
+
0 penalizing the distance to

the desired equilibrium solve

minimize J∞(x, u) =
∞∑

n=0

ℓ(x(n), u(n)) with u(n) = F (x(n)),

possibly subject to state/control constraints
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Model predictive control

Direct solution of the problem is numerically hard

Alternative method: model predictive control (MPC)
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Model predictive control

Direct solution of the problem is numerically hard

Alternative method: model predictive control (MPC)

Idea: replace the original problem

minimize J∞(x, u) =
∞∑

n=0

ℓ(x(n), u(n))

by the iterative (online) solution of finite horizon problems

minimize JN(x, u) =
N−1∑

n=0

ℓ(x(n), u(n))

We obtain a feedback law FN by a moving horizon technique
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Model predictive control
Basic moving horizon MPC concept:

At each time instant n solve for the current state x = x(n)

minimize JN(x, u) =
N−1∑

n=0

ℓ(xu(n), u(n)), xu(0) = x

 optimal trajectory xopt(0), . . . , xopt(N − 1)

 with optimal control uopt(0), . . . , uopt(N − 1)

 MPC feedback law FN(x(n)) := uopt(0)

 feedback controlled system (“closed loop”)

x(n + 1) = f(x(n), FN(x(n))) = f(xopt(0), uopt(0)) = xopt(1)

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 4
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Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 5



MPC from the trajectory point of view

3

n

x

0 1 2 3 4 5 6

x

black = predictions (open loop optimization)

red = MPC closed loop x(n + 1) = f(x(n), FN(x(n)))
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MPC: Questions
Questions:

When does MPC stabilize the system?
How good is the MPC Feedback law compared to the
infinite horizon optimal solution?
How robust is the MPC Feedback law with respect to
perturbations?
How can we reduce the computational effort?

Stability can be ensured by including additional “stabilizing”
terminal constraints to the finite horizon problem. Here we
consider problems without such stabilizing constraints.

Without such constraints, stability is known to hold for
“sufficiently large optimization horizon N”
[Alamir/Bornard ’95, Jadbabaie/Hauser ’05, Grimm et al. ’05]

How large is “sufficiently large”?

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 6



Estimating N

For obtaining a quantitative estimate we need quantitative
information.
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Estimating N

For obtaining a quantitative estimate we need quantitative
information.

A suitable condition is “exponential controllability through ℓ ”:

there exist real numbers C > 0, σ ∈ (0, 1) such that for
each x(0) ∈ X there is u(·) with

ℓ(x(n), u(n)) ≤ Cσnℓ∗(x(0))

with ℓ∗(x) = minu ℓ(x, u)
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Stability conditions

C, σ-exponential controllability: ℓ(x(n), u(n)) ≤ Cσnℓ∗(x(0))
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C, σ-exponential controllability: ℓ(x(n), u(n)) ≤ Cσnℓ∗(x(0))

Define α := 1 −

(γN − 1)
N∏
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(γi − 1)
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(γi − 1)

with γi =
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k=0

Cσk

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 8



Stability conditions
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(γN − 1)
N∏
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(γi − 1)

N∏

i=2

γi −
N∏

i=2

(γi − 1)

with γi =

i−1∑

k=0

Cσk

Theorem: If α > 0, then the MPC feedback FN stabilizes all
C, σ-exponentially controllable systems and we get
J∞(x, FN) ≤ inf

u∈U∞

J∞(x, u)/α

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 8



Stability conditions

C, σ-exponential controllability: ℓ(x(n), u(n)) ≤ Cσnℓ∗(x(0))

Define α := 1 −

(γN − 1)
N∏

i=2

(γi − 1)

N∏

i=2

γi −
N∏

i=2

(γi − 1)

with γi =

i−1∑

k=0

Cσk

Theorem: If α > 0, then the MPC feedback FN stabilizes all
C, σ-exponentially controllable systems and we get
J∞(x, FN) ≤ inf

u∈U∞

J∞(x, u)/α

If α < 0 then there exists a C, σ-exponentially controllable
system, which is not stabilized by FN
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Stability conditions

C, σ-exponential controllability: ℓ(x(n), u(n)) ≤ Cσnℓ∗(x(0))

Define α := 1 −

(γN − 1)
N∏

i=2

(γi − 1)

N∏

i=2

γi −
N∏

i=2

(γi − 1)

with γi =

i−1∑

k=0

Cσk

Theorem: If α > 0, then the MPC feedback FN stabilizes all
C, σ-exponentially controllable systems and we get
J∞(x, FN) ≤ inf

u∈U∞

J∞(x, u)/α

If α < 0 then there exists a C, σ-exponentially controllable
system, which is not stabilized by FN

Moreover, α → 1 as N → ∞

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 8



Stability chart for C and σ

(Figure: Harald Voit)
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Stability chart for C and σ

(Figure: Harald Voit)

Conclusion: try to reduce C, e.g., by choosing ℓ appropriately

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 9



A PDE example

We illustrate this with the 1d controlled PDE

yt = yx + νyxx + µy(y + 1)(1 − y) + u

with

domain Ω = [0, 1]

solution y = y(t, x)

boundary conditions y(t, 0) = y(t, 1) = 0

parameters ν = 0.1 and µ = 10

and distributed control u : R × Ω → R
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A PDE example

We illustrate this with the 1d controlled PDE

yt = yx + νyxx + µy(y + 1)(1 − y) + u

with

domain Ω = [0, 1]

solution y = y(t, x)

boundary conditions y(t, 0) = y(t, 1) = 0

parameters ν = 0.1 and µ = 10

and distributed control u : R × Ω → R

Discrete time system: y(n) = y(nT, ·) for some T > 0

(“sampled data system with sampling time T”)

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 10
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Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 11



The uncontrolled PDE

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
t=0.475

uncontrolled (u ≡ 0)
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MPC for the PDE example

yt = yx + νyxx + µy(y + 1)(1 − y) + u
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MPC for the PDE example

yt = yx + νyxx + µy(y + 1)(1 − y) + u

Goal: stabilize the sampled data system y(n) at y ≡ 0

For y ≈ 0 the control u must compensate for yx  u ≈ −yx

This observation and a little computation reveals:

For the (usual) quadratic L2 cost

ℓ(y(n), u(n)) = ‖y(n)‖2
L2 + λ‖u(n)‖2

L2

the constant C is much larger than for the quadratic H1 cost

ℓ(y(n), u(n)) = ‖y(n)‖2
L2 + ‖yx(n)‖2

L2

︸ ︷︷ ︸

=‖y(n)‖2

H1

+λ‖u(n)‖2
L2 .
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MPC for the PDE example

yt = yx + νyxx + µy(y + 1)(1 − y) + u

Goal: stabilize the sampled data system y(n) at y ≡ 0

For y ≈ 0 the control u must compensate for yx  u ≈ −yx

This observation and a little computation reveals:

For the (usual) quadratic L2 cost

ℓ(y(n), u(n)) = ‖y(n)‖2
L2 + λ‖u(n)‖2

L2

the constant C is much larger than for the quadratic H1 cost

ℓ(y(n), u(n)) = ‖y(n)‖2
L2 + ‖yx(n)‖2

L2

︸ ︷︷ ︸

=‖y(n)‖2

H1

+λ‖u(n)‖2
L2 .

 H1 should perform better that L2
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MPC with L2 vs. H1 cost
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Boundary Control
Now we change our PDE from distributed to (Dirichlet-)
boundary control, i.e.

yt = yx + νyxx + µy(y + 1)(1 − y)

with

domain Ω = [0, 1]

solution y = y(t, x)

boundary conditions y(t, 0) = u0(t), y(t, 1) = u1(t)

parameters ν = 0.1 and µ = 10

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 14



Boundary Control
Now we change our PDE from distributed to (Dirichlet-)
boundary control, i.e.

yt = yx + νyxx + µy(y + 1)(1 − y)

with
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solution y = y(t, x)

boundary conditions y(t, 0) = u0(t), y(t, 1) = u1(t)
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with boundary control, stability can only be achieved via large
gradients in the transient phase
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Boundary Control
Now we change our PDE from distributed to (Dirichlet-)
boundary control, i.e.

yt = yx + νyxx + µy(y + 1)(1 − y)

with

domain Ω = [0, 1]

solution y = y(t, x)

boundary conditions y(t, 0) = u0(t), y(t, 1) = u1(t)

parameters ν = 0.1 and µ = 10

with boundary control, stability can only be achieved via large
gradients in the transient phase
 L2 should perform better that H1
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Boundary control, L2 vs. H1, N = 20
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Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 15



Boundary control, L2 vs. H1, N = 20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t=0.125

 

 
Horizont 20 (L2)
Horizont 20 (H1)

Boundary control, λ = 0.001, sampling time T = 0.025
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Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 15



Boundary control, L2 vs. H1, N = 20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t=0.55

 

 
Horizont 20 (L2)
Horizont 20 (H1)

Boundary control, λ = 0.001, sampling time T = 0.025
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Robustness

Usually, the model used for optimization

x(n + 1) = f(x(n), u(n))

does not exactly match the real system
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Robustness

Usually, the model used for optimization

x(n + 1) = f(x(n), u(n))

does not exactly match the real system

This mismatch can, e.g., be modelled by an additive
perturbation

xreal(n + 1) = f(xreal(n), u(n)) + d(n)

Robustness :⇔ the system still approaches/stays within a
neighborhood of the stable equilibrium for small d(n)

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 16
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Robustness

Robustness can be ensured, e.g., by

(uniform) continuity of the optimal value function
VN(x) = infu JN(x, u), which serves as a Lyapunov
function [De Nicolao/Magni/Scattolini ’96;

Nešić/Teel/Kokotović ’99; Gr./Pannek ’11]
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Nešić/Teel/Kokotović ’99; Gr./Pannek ’11]

(may not hold in presence of state constraints)

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 18



Robustness

Robustness can be ensured, e.g., by

(uniform) continuity of the optimal value function
VN(x) = infu JN(x, u), which serves as a Lyapunov
function [De Nicolao/Magni/Scattolini ’96;

Nešić/Teel/Kokotović ’99; Gr./Pannek ’11]

(may not hold in presence of state constraints)

a specific construction of tightening state constraints
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Robustness

Robustness can be ensured, e.g., by

(uniform) continuity of the optimal value function
VN(x) = infu JN(x, u), which serves as a Lyapunov
function [De Nicolao/Magni/Scattolini ’96;

Nešić/Teel/Kokotović ’99; Gr./Pannek ’11]

(may not hold in presence of state constraints)

a specific construction of tightening state constraints
[Michalska/Mayne ’93; Limón/Alamo/Camacho ’02;

Grimm et al. ’07; Gr./Pannek ’11]

In the latter case, stability and robustness analysis must be
carried out in an integrated way

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 18



Reducing the computational load

Back to the unperturbed case:

The computationally most expensive part of an MPC
controller is the optimization
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optimization algorithm, see, e.g. [Diehl et al. ’01ff.]
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Reducing the computational load

Back to the unperturbed case:

The computationally most expensive part of an MPC
controller is the optimization

Many approaches exist for increasing the efficiency of the
optimization algorithm, see, e.g. [Diehl et al. ’01ff.]

A more systems theoretic approach: perform re-optimization
less often

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 19
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Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 20



Schematic illustration of the idea

2

n

x

0 1 2 3 4 5 6

x

black = predictions (open loop optimization)
red = MPC closed loop
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Stability analysis

Denote the by mj the number of elements used from the j-th
control sequence, called the “control horizon”
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Stability analysis

Denote the by mj the number of elements used from the j-th
control sequence, called the “control horizon”

Then the stability and performance analysis extends to
time-varying control horizons if we use α = minmj

α(mj)
where

α(m) = 1−

N∏

i=m+1

(γi − 1)
N∏

i=N−m+1

(γi − 1)

(
N∏

i=m+1

γi −
N∏

i=m+1

(γi − 1)

) (
N∏

i=N−m+1

γi −
N∏

i=N−m+1

(γi − 1)

)

with γi =
∑i−1

k=0 Cσk

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 21



Property of α(m)

Theorem: The values α(m) satisfy

α(m) = α(N−m), m = 1, . . . , N−1

and

α(m) ≤ α(m+1), m = 1, . . . ⌈N/2⌉
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Property of α(m)
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Corollary: If N is such that all C, σ-exponentially controllable
systems are stabilized with “classical” MPC (m = 1), then
they are stabilized for arbitrary varying control horizons
mi ∈ {1, . . . , N − 1}
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Property of α(m)

Theorem: The values α(m) satisfy

α(m) = α(N−m), m = 1, . . . , N−1

and

α(m) ≤ α(m+1), m = 1, . . . ⌈N/2⌉
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Corollary: If N is such that all C, σ-exponentially controllable
systems are stabilized with “classical” MPC (m = 1), then
they are stabilized for arbitrary varying control horizons
mi ∈ {1, . . . , N − 1}

How does α(m) look like for a single system?

Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 22



Example: linearized inverted pendulum
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sampling time T = 0.5, ℓ(x, u) = 2‖x‖1 + 4‖u‖1, N = 11
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Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 25



Problem of the approach: less robustness

0

n

x

0 1 2 3 4 5 6

x

black = predictions (open loop optimization)
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Lars Grüne, Stability and robustness of nonlinear predictive control without stabilizing terminal constraints, p. 25



Problem of the approach: less robustness

3

n

x

0 1 2 3 4 5 6

x

black = predictions (open loop optimization)
red = perturbed MPC closed loop
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Discussion of the approach

Conclusion:

longer control horizons can be used without affecting the
nominal (=unperturbed) stability and performance

but: longer control horizons may reduce robustness

Remedy:

use sensitivity based techniques to update the “tails” of
the optimal control sequences

perform an integrated robustness and stability analysis

This will be the starting point for SADCO Task 3.3
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tasks in SADCO project:
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◮ integrated stability and robustness analysis
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