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Abstract In this paper, we present methods for face recog- |

nition using a collection of images with captions. We con- | AN

sider two tasks: retrieving all faces of a particular person in ) :

a data set, and establishing the correct association between ‘

the names in the captions and the faces in the images. This ig ) Ny .

challenging because of the very large appearance variation \‘\ \

in the images, as well as the potential mismatch between AN

images and their captions. _ S United Nations Secretary GenefalNorth Korean leaderkim Jong
For both tasks, we compare generative and discrimina- | Ko Annan stands with U.N. Sect{ |I, and Russian Presideiadimir

tive probabilistic models, as well as methods that maximize | % counci President and U.S. Am putin walk after talks in Viadivostok
p bassador to the U.Nlohn D. Negro- Friday, Aug. 23, 2002. North Koreﬂn

subgraph densities in similarity graphs. We extend them by | ponteas Annan ... leader Kim . ..

considering different metric leaming techniques to 0btalr‘:ig. 1 Two example images with captions. Detected named entities are

appropriate face representations that reduce intra person Vafipold font, and detected faces are marked by yellow rectangles.
ability and increase inter person separation. For the retrieval

task, we also study the bene t of query expansion.

To evaluate performance, we use a new fully labeled datariented media publishing online, or user-provided content
set of 31147 faces which extends the redeziteled Faces in  concentrated on websites such as YouTube and Flickr. The
the Wilddata set. We present extensive experimental resulgppearance of these archives has resulted in a set of new
which show that metric learning signi cantly improves the challenges for the computer vision community. The sheer
performance of all approaches on both tasks. size of these archives makes it impossible to manually in-
dex the content with annotation terms needed for meaningful
keyword-based retrieval. Therefore, one of the challenges is
the need for tools that automatically analyze the visual con-
tent and enrich it with semantically meaningful annotations.
Due to the dynamic nature of such archives —new data is
added every day— the use of traditional fully supervised
machine learning techniques is less suitable. These would
Over the last decade we have witnessed an explosive growfgduire a suf ciently large set of hand-labeled examples of
of image and video data available both on-line and off-line €ach semantic concept that should be recognized from the

through digitalization efforts by broadcasting services, newoW-level visual features. Instead, methods are needed that
require less explicit supervision, ideally avoiding any hand-

Keywords Face recognition Metric Learning Weakly
supervised learningFace retrieval Constrained clustering

1 Introduction

All authors are at the LEAR team labeling of images and making use of implicit forms of an-
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Fig. 2 The extended YaleB data set includes illumination and pose
variations for each subject, but not other variations such as ones dud
to expression.

2007). The crux of those systems is to exploit the relations
between different media, such as the relation between inFig. 3 Several examples of face pairs of the same person from the
ages and text, and between video and subtitles Combiné@peled Faces in the Wildata set. There are wide variations in illumi-
with scripts (Barnard et al., 2003, Everingham etal., 2006?at|0n, scale, expression, pose, hair styles, hats, make-up, etc.
Guillaumin et al., 2009a, Satoh et al., 1999, Sivic et al.,
2009, Verbeek and Triggs, 2007). The correlations that can
be automatically detected are typically less accurageg- Whether or not two images depict the same object from a
images and text associated using a web search engine likrain class. The con dence scores, or a posteriori class
Google (Berg and Forsyth, 2006, Fergus et al., 2005) — thaRrobabilities, for the visual identi cation problem can be
supervised information provided by explicit manual efforts.thought of as an object-category-speci c dissimilarity mea-
However, the important difference is that the former can b&ure between instances of the category. Ideally it is 1 for
obtained at a lower cost, and therefore from much largetmages of different instances, and 0 for images of the same
amounts of data, which may in practice outweigh the highePbiect. Importantly, scores for visual identi cation can also
quality of supervised information. be applied for other problems such as visualisation (Nowak
In this paper, we focus on face recognition using wealdnd Jurie, 2007), recognition from a single example (Fei-
supervision in the form of captions. See Figure 1 for illus-F€i et al., 2006), associating names and faces in images (as
trations. We will address two speci ¢ problems, the rst is done in this paper) or video (Everingham et al., 2006), or
to retrieve all the faces belonging to a speci ¢ person fromP€0PIe oriented topic models (Jain et al., 2007). The face
a given data set, and the second is to name all persons fimilarity measures can be learned from two types of su-
all images of a data set. The data set we use consists of ifRErVision. Either a set of faces labeled by identity can be
ages and captions from news streams, which are importaHised’ or a collection of face pairs that are labeled as con-
as they are major sources of information, and news article€ining the same person twice, or two different people. The
are published frequently. Identi cation of faces in news pho-Similarity measures are learned on faces of a set of people
tographs is a challenging task, signi cantly more so thanthat is disjoint from the set of people that are used in the
recognition in the usual controlled setting of face recogP€ople search and face naming tasks. In this manner we as-
nition: we have to deal with imperfect face detection andSure that the learned similarity measures generalize to other
alignment procedures, and also with great changes in pose€0ple, and are therefore more useful in practice. It is also
expression, and lighting conditions, and poor image resolyRossible to learn _the su”_mlarlty measure directly from weakly
tion and quality. To stress the dif culty of face recognition 'abeled data (Guillaumin et al., 2010), but the resulting mea-
in this setting, we show in Figure 2 images from the YaleBSure achieves lower generalization performance.
data set (Georghiades et al., 2005), which are obtained in a This paper presents an integrated overview of our results
controlled way, compared to images from ttebeled Faces presented earlier (Guillaumin et al., 2008, 2009b, Mensink
in the Wilddata set (Huang et al., 2007b) shown in Figure 3and Verbeek, 2008). The main contribution consists in ex-
In this paper we consider the use of learned similaritytending the earlier work by integrating and improving the fa-
measures to compare faces for these two tasks. We use tbial similarity learning approach of Guillaumin et al. (2009b)
techniques we developed in Guillaumin et al. (2009b) forwith the caption-based face recognition methods presented
face identi cation. Face identi cation is a binary classi ca- in Guillaumin et al. (2008), Mensink and Verbeek (2008).
tion problem over pairs of face images: we have to deterVe propose a standardized evaluation protocol on a data
mine whether or not the same person is depicted in the inset that we make publicly available, and also recently used
ages. More generally, visual identi cation refers to decidingin Guillaumin et al. (2010).



In the following, we rst review related work in Sec- pear just before the person appears on the video, because
tion 2. We present the data set that we used for our taskspeeches are most often introduced by an anchor person.
in Section 3, as well as the name and face detection proce- Related work associating names to faces in an image in-
dures, and our facial feature extraction procedure. We thegludes the similarity-based approach of Zhang et al. (2004)
continue in Section 4 with a discussion of several basic simwhere face annotations are propagated for each individual
ilarity measures between the face representations, and alglependently. A generative mixture model (Berg et al., 2004)
detail methods to learn a similarity measure between facesf the facial features in a database associates a mixture com-
from labeled data. Methods that are geared toward retrievingonent with each name. The main idea of this approach is to
all the faces of a speci ¢ person are presented in Section Jerform a constrained clustering, where constraints are pro-
In Section 6 we describe methods that aim at establishing allided by the names in a document, and the assumption that
name-face associations. An extensive collection of experieach person appears at most once in each image, which rules
mental results that compare the different recognition metheut assignments of several faces in an image to the same
ods and face representations is then considered in Sectionffame. While in practice some violations of this assumption
In Section 8, we end the paper by presenting our conclusionsccur,e.g people that stand in front of a poster or mirror that
and we identify lines of further research. features the same person, there are suf ciently rare to be ig-
nored. Additionally, the names in the document provide a
constraint on which names may be used to explain the fa-
cial features in the document. A Gaussian distribution in a
facial feature space is associated with each name. The clus-
Learning semantic relations from weaker forms of supervil€ring of facial features is performed by tting a mixture of
sion is currently an active and broad line of research. Worieaussians (MoG) to the facial features with the expectation-
along these lines includes learning correspondence betwe8tXimization (EM) algorithm (Dempster et al., 1977), and
keywords and image regions (Lazebnik et al., 2003, VeriS analogous to the constrained k-means clustering approach
beek and Triggs, 2007), and learning image retrieval an8f Wagstaff and Rogers (2001).
auto-annotation with keywords (Barnard et al., 2003, Grang- Rather than learning a mixture model over faces con-
ier et al., 2006). In these approaches, images are label&ained by the names in the caption, the reverse was con-
with multiple keywords per image, requiring resolution of Sidered in Pham et al. (2008). They clustered face descrip-
correspondences between image regions and semantic caf@:s and names in a pre-processing step, after which each
gories. Supervision from even weaker forms of annotatiomame and each face are both represented by an index in a
are also explored, e.g. based on images and accompanyiﬁgrresponding discrete set of cluster indices. The problem
text (Bressan et al., 2008, Jain et al., 2007), and video witRf matching names and faces is then reduced to a discrete
scripts and subtitles (Everingham et al., 2006, Laptev et alMatching problem, which is solved using probabilistic mod-
2008). els. The model de nes correspondences between name clus-

The earliest work on automatically associating nameders and face clusters using multinomial distributions, which
and faces in news photographs is probably the PICTIONV€ estimated using an EM algorithm.
system (Srihari, 1991). This system is a natural language The face naming problem has also been studied in an in-
processing System that ana|yzes the Caption to he|p the \ﬁeractive Setting. Given an initial Clustering the System asks
sual interpreta‘[ion of the picture_ The main feature of théhe user to indicate some of the identities, either on the im-
system is that identi cation is performed only using face@ade level (Naaman et al., 2005) or on the face level (Tian
locations and spatial constraints obtained from the captioret al., 2007), to update the clustering. Both clustering meth-
No face similarity, description or characterization is used©ds take into account the co-occurrence of different people
although weak discriminative clues (like male vs. female)in photographs as well as the uniqueness (a person is only
were included. Similar ideas have been successfully usedepicted once in an image).
in, for instance, the Name-it system (Satoh et al., 1999), al- Random Fields have also been studied to name all faces
though their work concerned face-name association in new an image in,e.g, Anguelov et al. (2007), Stone et al.
videos. The name extraction is done by localising names i£2008). Each face is a node in the graph and a random eld
the transcripts and video captions, and, optionally, souni$ solved either for each picture or for a group of pictures.
track. Instead of simple still images, they extract face seUnary potentials are used to describe the similarity between
quences using face tracking, so that the best frontal face @f face and a name, and pairwise potentials are used to in-
each sequence can be used for naming. These frontal facgdgde a uniqueness prior and a co-occurrence score.
are described using Eigenfaces method (Turk and Pentland, Previous work that considers retrieving faces of speci ¢
1991). The face-name association can then be obtained wigieople from caption-based supervision includes Ozkan and
additional contextual cues,g candidate names should ap- Duygulu (2006, 2009), and ours (Guillaumin et al., 2008,

2 Related work



Mensink and Verbeek, 2008). These methods perform a tex{different class) pairs. The difference among these methods
based query over the captions, returning the documents thatainly lies in their objective functions, which are designed
have the queried name in the caption. The faces found ifor their speci c tasks, e.g. clustering (Xing et al., 2004), or
the corresponding images are then further visually analyzed&NN classi cation (Weinberger et al., 2006). Some methods
The assumption underlying these methods is that the rexplicitly need all pairwise distances between points (Glober-
turned documents contain a large group of highly similarson and Roweis, 2006), which makes them dif cult to ap-
faces of the queried person, and additional faces of manply in large scale applications (say more than 10000 data
other people appearing each just a few times. The goal igoints). Among the existing methods, large margin nearest
thus to nd a single coherent compact cluster in a spaca&eighbour (LMNN) metrics (Weinberger et al., 2006) and
that also contains many outliers. A graph-based method wasformation theoretic metric learning (ITML) (Davis et al.,
proposed in Ozkan and Duygulu (2006): nodes represer007)), together with LDML, are state-of-the-art.

faces, and edges encode similarity between faces. The faces Metric learning is one of the numerous types of methods
in the subset of nodes with maximum density are returnethat can provide robust similarity measures for the problem
as the faces representing the queried person. In Guillaumif face and, more generally, visual identi cation. Recently
et al. (2008), Mensink and Verbeek (2008) we extended ththere has been considerable interest for such identi cation
graph-based approach, and compared it to generative Mof@ethods (Chopra et al., 2005, Ferencz et al., 2008, Holub
approach similar to that used for face naming, and a diset al., 2008, Jain et al., 2006, Kumar et al., 2009, Nowak
criminative approach that learns a classi er to recognize thend Jurie, 2007, Pinto et al., 2009, Wolf et al., 2008). It is
person of interest. noticeable that some of these approaches would not t the

We found the performance of these methods to deterioMetric Learning framework because they do not work with
rate strongly as the frequency of the queried person amorfy vectorial representation of faces. Instead, the similarity
the faces returned after the text search drops below abol#€asure between faces is evaluated by matching low-level
40%, contradicting their underlying assumption. In this casefeatures between images, and this matching has to be per-
the faces of the queried person are obscured by many facE¥med for any pair of images for which we need the sim-
of other people, some of which also appear quite often dudarity score. Since this matching is usually computionally
to strong co-occurrence patterns between people. To all€Xpensive, computing pairwise distances of vectorial repre-
viate this problem, we proposed in Mensink and Verbeeléentations of faces instead is typically orders of magnitude
(2008) a method that explicitly tries to nd faces of co- faster.
occurring people and use them as “negative' examples. The
names of co-occurring people are found by scanning the
captions that contain the person of interest, and countina Data sets, tasks and features
which other names appear most frequently. Thus, the name _, . . . :
co-occurrences are uzzd to enlarge ?he sei/of faces that isnl/ri]—thIS section, we describe the data sgts we have used in our

work. These data settabeled Faces in the Wil§Huang

:\uz!yvjr::rlgztﬁg: tzir'ir;'ge::asriteogly ngstal‘:; dtrt]ﬁzifervo\/n;é?_ t al., 2007b) andlabeled Yahoo! New&uillaumin et al.,
9 g PP ' 10), are the result of annotation efforts on subsets of the

!ncludes those from 'mages with co-occurring people. Th'%(ahoo! Newslata set, with different tasks in mind. The for-
is related to query expansion methods for document and im-

age retrieval (Buckley et al., 1995, Chum et al., 2007), wher ner alms'at develpplng identi cation methods, while the Ie'1t-

. er adds information about the structure of the data which
query expansion is used to re-query the database to Obtalrz‘an be used for retrieval. clustering or other tasks
more similar documents or images. In the setting to name afl The Yahoo! Newsiata'base Was?ntroduced b B'er et al
faces in an image, it has been proposed to use friend simi— ' y Berg ‘

larities, based on a social network graph (Stone et al., 2008 2004), it was collected in 2002-2003 and consists of im-

. . o ges and accompanying captions. There are wide variations
and on co-occurrences in a known set of identities (Naaman . . . .
etal., 2005) In appearances with respect to pose, expression, and illumi-

i S ~ nation, as shown in two examples in Figure 1. Ultimately,
In this paper we deploy our logistic discriminant metric {he goal was to automatically build a large data set of anno-

learning approach (LDML) (Guillaumin et al., 2009b) for (ateq faces, so as to be able to train complex face recognition
these two tasks. Metric learning has received a lot of atte”;ystems on it.

tion. For recent work in this area seeg, Bar-Hillel et al.

(2005), Davis et al. (2007), Globerson and Roweis (2006),

Ramanan and Baker (2009), Weinberger et al. (2006), Xing.1 Labeled Faces in the Wild

etal. (2004). Most methods learn a Mahalanobis metric based

on an objective function de ned by means of a labelled trainfrom theYahoo! Newslata set, thd.abeled Faces in the
ing set, or from sets of positive (same class) and negativid/ild (Huang et al., 2007b) data set was manually built, us-



ing the captions as an aid for the human annotator. It con-
tains 13233 face images labelled by the identity of the per-
son. In total 5749 people appear in the images, 1680 of them
appear in two or more images. The faces show a big variety
in pose, expression, lighting, etc., see Figure 3 for some ex-
amples. An aligned version of all faces is available, referred
to as “funneled”, which we use throughout our experiments.
This data set can be viewed as a partial ground-truth for the
Yahoo! Newdlata setlLabeled Faces in the Wiltas be-
come thede factostandard data set for face identi cation,
with new methods beging regularly added to the compari-
son. The data set comes with a division in 10 parts that can | “9%

o . . is joined by her brotherGeorge P. Bush(L) and Bush
be used for cross validation experiments. The folds contain family attorneyPete Antonacciluring her hearing in Or
between 527 and 609 different people each, and between |ange County, Florida court, July 19, 2002.

1016 and 1783 faces. From all possible pairs, a small set of

e s ; ; ig. 4 Example of a document in the Labeled Yahoo! News data set.
300 positive and 300 negative image pairs are provided fo!:FWO faces were detected by the face detector (f1 and f2, shown in yel-

eaCh_ fold. USing_Only these pairs fpr trgining is ref(_arred_to aS};ow), while a face was missed in the middle (for illustration purposes,
the “image-restricted” paradigm; in this case the identity ofa red box has been hand-drawn, but f3 is not part of the annotation).

the people in the pairs can not be used. The “unrestrictedFhree names have been detected in the caption, shown in bold, while

; ; o e was missed by the named entity detector (shown in italic). The
paradigm is used to refer to training methods that can LIS%?anual annotation consists in (1) associating f2 with George P. Bush,

?” available data, including the identity of the people in the,) ingicating that f1 depicts a person whose name was missed by the
Images. named entity detector, and (3) that the face f3 for Noelle Bush was
missed by the face detector.

Noelle Bush(C), daughter of Florida Governdeb Bush

3.2 Labeled Yahoo! News

detection. (ii) The image depicts a person whose name
is not in the caption. (iii) The image depicts a person
whose nhame was missed by the named entity detector.
For names that do not correspond to a detected face, the
annotation indicates whether the face is absent from the
image or missed by the detector.

With growing efforts towards systems that can ef ciently
query data sets for images of a given person, or use the con-
straints given by documents to help face clustering (Guil-5
laumin et al., 2008, Mensink and Verbeek, 2008, Ozkan and
Duygulu, 2006), it has become important for the commu-
nity to be able to compare those systems with a standardised
data (Guillaumin et al., 2010) set and make it available ontected face together with an undetected name. Although this
line for download. On the originalYahoo! Newslata ob- information is not used in our system, it would allow for
tained from Berg, we have applied the OpenCV implementa@n ef cient update of associ_ations if we were to change the
tion of the Viola-Jones face detector (Viola and Jones, 2004fce detector or named entity detector. Note that we do not
and removed documents W|th0ut detections_ We then a@.nnotate the Undetected faceS W|th their bounding bOX. An
plied a named entity detector (Deschacht and Moens, 2008ample of annotation is shown in Figure 4. _
to nd names appearing in the captions, and also used the In order to be able to use learning algorithms while eval-
names from th& abeled Faces in the Wildata set as a dic- uating on a distinct subset, we divide the data set into two
tionary for a caption Iter to compensate for some missedcOmpletely independent sets. Ttestsubset rst includes
detections. the images of the 23 persons that have been used in Guil-
Our manual annotation effort on the 28204 documentéaumin et al. (2008), Mensink and Verbeek (2008), Ozkan

that contain at least one name and one face provided ead@hd Duygulu (2006, 2009) for evaluating face retrieval from
document with the following information: text-based queries. This set is extended with documents con-

o taining “friends” of these 23 persons, where friends are de-
1. The correct association of detected faces and detecte,qed as people that co-occur in at least one document. The

names. set of other documents, theaining set, is pruned so that

2. For detected faces that are not matched to a name, t€.nqs of friends of queried people are removed. Thus, the
annotations indicate which of the three following pos-y,q sets are now independent in terms of identity of people
sibilities is the case: (i) The image is an incorrect face,nnearing in them. 8133 documents are lost in the process.

1 Our data set is available dittp:/lear.inrialpes. r/ Thetestset has 9362 documents, 14827 faces and 1071

data/ different people: because of the speci ¢ choice of queries
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-.‘!ﬂﬁ-i.. recognition (Wolf et al., 2008) when using standard distances.
1 I T I Our features are available with the data set.
TS 000
vE' "‘. - Lo ""E.' 4 Metrics for face identi cation

84 Slobbiaba [ |

Given a vectorial representation 2 RP of a face image
Fig. 5 lllustration of our SIFT-based face descriptor. SIFT features(indexed byi), we now seek to design good metrics for iden-
(128D) are extracted at 9 locations and 3 scales. Each row represeniscation.
a _scale at W_hich the patches are extracted: _the top row is scale 1, the For both the face retrieval tasks and the face naming
middle row is scale 2 and the bottom row is scale 3. The rst col- . L
umn shows the locations of the facial features, and the remaining nin@Sks’ we indeed need to assess the similarity between two
columns show the corresponding patches on which 128D SIFT descrigaces with respect to the identity of the depicted person.
tors are computed. The descriptor is the concatenation of thesg Intuitively, this means that a good metric for identi cation
SIFT features. should produce small distances — or higher similarity — be-
tween face images of the same individual, while yielding
(namely:Abdullah Gu) Roh Moo-huynJiang ZeminDavid  higher values — or lower similarity — for different people.
Beckham Silvio Berlusconi Gray Davis Luiz Inacio Lula  The metric should suppress differences due to pose, expres-
da Silvg John Paul Il Ko Annan, Jacques ChiragVladimir ~ sion, lighting conditions, clothes, hair style, sun glasses while
Putin, Junichiro Koizumj Hans Blix Jean ChretienHugo  retaining the information relevant to identity. These metrics
Chavez John Ashcroft Ariel Sharon Gerhard Schroeder can be designed in an ad-hoc fashion, set heuristically, or
Donald RumsfeldTony Blair, Colin Powel| Saddam Hus- learned from manually annotated data.
sein George W. Bush it has a strong bias towards news  We restrict ourselves here to Mahalanobis metrics, which
of political events. Theraining set has 10709 documents, generalize the Euclidean distance. The Mahalanobis distance

16320 faces and 4799 different people: on the opposite, hetweerx; andx; is de ned as

contains mostly news rel'c_mng to sport events. Not_abI)_/, th%M Xiixi)=(xi X)) M X)) )
average number of face images for each person is signi -
cantly different between the two sets. whereM 2 RP P is a symmetric positive semi-de nite

matrix that parametrizes the distance. Sileis positive
semi-de nite, we can decompose itls= L> L. Learning
3.3 Face description the Mahalanobis distance can be equivalently performed by
optimisingL, or M directly.L acts as a linear projection of
Face images are extracted using the bounding box of thiae original space, and the Euclidean distance after projec-
Viola-Jones detector and aligned using the funneling methotion equals the Mahalanobis distance de ned on the original
(Huang et al., 2007a) of tHeabeled Faces in the Wildata space byM .
set. This alignment procedure nds a similarity transforma-  First, as a baseline, we can M to be the identity ma-
tion of the face images so as to minimize the entropy of therix. This results simply in the Euclidean distance (L2) be-
image stack. On these aligned faces, we apply a facial feaween the vectorial representations of the faces.
ture detector (Everingham et al., 2006). The facial feature We also consider settinlg using principal components
detector locates nine points on the face using an appearana@alysis (PCA), which has also previously been used for
based model regularized with a tree-like constellation modeface recognition (Turk and Pentland, 1991). The basic idea
For each of the nine points on the face, we calculate 128 dis to nd a linear projectiorlL that retains the highest possi-
mensional SIFT descriptors at three different scales, yieldble amount of data variance. This unsupervised method im-
inga9 3 128 = 3456dimensional feature vector for proves the performance of face recognition by making the
each face as in Guillaumin et al. (2009b). An illustration isface representation more robust to noise. These projected
given in Figure 5. The patches at the nine locations and threepresentations can also be more compact, allowing the use
scales overlap enough to cover the full face. Therefore, wef metric learning methods that scale with the square of the
do not consider adding other facial feature locations by indata dimensionality.
terpolation as in Guillaumin et al. (2008), where 13 points  Metric learning techniques are methods to leltnor
were considered on a unique low scale. L in a supervised fashion. To achieve this, class labels of
There is a large variety of face descriptors proposed ifimages are assumed to be known. For imagee denotey;
the literature. This includes approaches that extract featuréts class label. Imagdsandj form a positive pair ify; = y; ,
based on Gabor lters or local binary patterns. Our work inand a negative pair otherwise.
Guillaumin et al. (2009b) showed that our descriptor per- In the following paragraphs, we describe three metric
forms similarly to recent optimized variants of LBP for face learning algorithms: large margin nearest neighbors (LMNN,



Weinberger et al. (2006)), information theoretic metric learn4.2 Information theoretic metric learning

ing (ITML, Davis et al. (2007)), and logistic discriminant

based metric learning (LDML, Guillaumin et al. (2009b)). Davis et al. (2007) have taken an information theoretic ap-
We also present an extension of LDML for supervised difroach to optimizeM under a wide range of possible con-
mensionality reduction (Guillaumin et al., 2010). straints and prior knowledge on the Mahalanobis distance.
This is done by regularizing the matrM such that it is

as close as possible to a known prMrg. This closeness

is interpreted as a Kullback-Leibler divergence between the
two multivariate Gaussian distributions correspondiniyito
andM g: p(x; M) andp(x; M ). The constraints that can

. ) ) be used to drive the optimization include those of the form:
Recently, Weinberger et al. (2006) introduced a metric IearndM (xi1xj)  u for positive pairs andiy (x;;x;) | for

ing method, that learns a Mahalanobis distance metric dg;egative pairs, whera and! are constant values. Scenar-
S!Q”efj to improve resglts &fnearest n?'ghPOUf (kNN) clas- o5 with unsatis able constraints are handled by introducing
si cation. A good metric for kNN classi cation should make ¢3¢k variables = f i gand using a Lagrange multiplier

for each data point thie nearest neighbours of its own class 4t controls the trade-off between satisfying the constraints

closer than points from other classes. To formalize, we dez,qg usingVl o as metric. The nal objective function equals
ne target neighbours ok; as thek closest pointx; with

H . M . . 0
yi = ;. let j =1 if x; is a target neighbour of;, and ~ ,™N KL(POGMo)ipOGM)) + (5 7) @)

4.1 Large margin nearest neighbour metrics

ij =0 otherw_ise. Further_more, lef; = 1 i.f yi 6 y;,and st dw(xi;X;)  for positive pairs
i =0 otherwise. The objective function is ] . .
or dw (Xi;Xj) ij  for negative pairs
"(M) = X i du (Xi1%1) wheref is a loss function betweenand target ° that con-
i : . tains { = u for positive pairs and? = | for negative
X pairs.

+ i i [T+ dv (Xiixp)  dv (Xisx)l, s (2)

" The parameters! o and have to be provided, although
L

it is also possible to resort to cross-validation techniques.

where[z]. = max(z;0). The rst term of this objective Usually,M o can be set t.o the identity T“at“x'z
L . . The proposed algorithm scales with{(CD <) whereC
minimises the distances between target neighbours, whereas : o
! . . Is the number of constraints on the Mahalanobis distance.
the second term is a hinge-loss that encourages target neigh- o . :
. : - ince we want to separate positive and negative pairs, we
bours to be at least one distance unit closer than points from 2 : ) .
o : de ne N = constraints of the forndy (x;;Xx;) bfor posi-
other classes. The objective is convesMnand can be min-

imised using sub-gradient methods under the constraint thtly_e pairs ancbIM.(>.<i ;%) bfor negative pairs, and we set
. " . . . . = 1 as the decision threshdldrhe complexity is therefore

M is positive semi-de nite, and using an active-set strategyO (N2D?)

for the constraints. We refer to metrics learned in this man- '

ner as Large Margin Nearest Neighbour (LMNN) metrics.

Rather than requiring pairs of images labelled positive4.3 Logistic discriminant-based metric learning
or negative, this method requires labelled tripleg | ) in
whichi andj are target neighbours, buandl should notbe In Guillaumin et al. (2009b) we proposed a method, simi-
neighbours. In practice we apply this metfaoging labelled lar in spirit to Davis et al. (2007), that learns a metric from
training data(x;;y;), and implicitly use all pairs although labelled pairs. The model is based on the intuition that we
many never appear as active constraints. would like the distance between images in positive pairs,

The cost function is designed to yield a good metric forl-€: images andj such thay; =y; (we notetj =1), tobe
kNN classi cation, and does not try to make all positive smaller than the distances corresponding to negative pairs

pairs have smaller distances than negative pairs. Therefordi =0)- Using the Mahalanobis distance between two im-
directly applying a threshold on this metric for visual iden-29€S, the probabilitp; that they contain the same object is

ti cation might not give optimal results but they are never- d€ neéd in our model as

theless very good. In pratice, the valuekadiid not strongly By = Pty jXi; XM= (b dw (Xi5%;)); 4)
in uence the results. We therefore kept the default value pro- _ _ _ _
posed by the authors of the original wok% 3). where (z) = (1+exp( 2z)) !isthe sigmoid function and

b a bias term. Interestingly for the visual identi cation task,

2 We used code available attp://www.weinbergerweb. 3 We used code available attp://www.cs.utexas.edu/
net/ . users/pjain/itml/
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the bias directly works as a threshold value and is learne(2009), approaches which also use the third stage generally
together with the distance metric parameters. outperform methods based only on text. The assumption un-
The direct maximum likelihood estimation 8 andb  derlying stage (iii) is that the faces in the result set of the
is a standard logistic discriminant model (Guillaumin et al.,text-based search consist of a large group of highly similar
2009b), which allows convex constraints to be applied usfaces of the queried person, plus faces of many other people
ing e.g the projected gradient method (Bertsekas, 1976) oappearing each just a few times. The goal is thus to nd a
interior point methods to enforce positive semi-de nitenesssingle coherent compact cluster in a space that also contains
This is done by performing an eigenvalue decomposition omany outliers.
M at each iteration step, which is costly. Maximum likeli- In the rest of this section we present methods from Guil-
hood estimation oE instead oM has the advantage of us- laumin et al. (2008), Mensink and Verbeek (2008) to per-
ing simple gradient descent. Additionally,2 R® ° need form the ranking based on visual similarities. We present
not be a square matrix, and in the caselof D a super- three methods: a graph-based method (Section 5.1), a method
vised dimensionality reduction is performed. Therefore, inbased on a Gaussian mixture model (Section 5.2), and a dis-
the following, we optimizé., as in Guillaumin et al. (2010). criminant method (Section 5.3). In Section 5.4 we describe
4 the idea of query expansion, adding faces of frequent co-
The log-likelihood of the observed palflisj ), with prob-  occuring persons to obtain a notion of whom we are not
ability p; and binary labels; , is looking for. In our experiments, we will compare these meth-
X ods using similarities originating from both unsupervised

L= tlogp; +(1 t)log(l pj) ) and learned metrics
i ’
Q@ L X
—_ = ti . . . . \> :
Q M p0a )0 X)) ©® 54 Graph-based approach

1)
When all the_ pairwise di_stances of a data set are consideregl, o graph-based approach of Guillaumin et al. (2008),
we can rewrite the gradient as Ozkan and Duygulu (2006), faces are represented as nodes
@ = 2LXHX > @) and edges encode the similarity between two faces. The as-
sumption that faces of the queried person occur relatively
whergX =[xi]2 R® N andH = [hjl2 RN N with  frequent and are highly similar, yields a search for the dens-
hj = i6i (tj pi ) andhy = pj ty forj 6 i. est sub graph.

In Figure 6, we show the data distribution of two indi- ~ We de ne a graphG = (V;E) where the vertices in
viduals after projecting their face descriptors on a 2D planey represent faces and edgesEirare weighted according to
comparing supervised dimensionality reduction learned osimilarity w; between facesand;j . To Iter our initial text-
the training set of theabeled Yahoo! Newdata set and un- based results, we search for the densest sub@aplv, of
supervised PCA. As we can see, supervised dimensiondB, where the densitf/(S) of S is given by
ity reduction is a powerful tool to grasp in low-dimensional W
spaces the important discriminative features useful for th&(S) = _W2s A . (8)

) C IS]
identi cation task.
In Ozkan and Duygulu (2006), a greedy 2-approximate

algorithm is used to nd the densest component. It starts
5 Retrieving images of speci ¢ people with the entire graph as subs& € V), and iteratively re-
moves nodes untjiSj = 1. At each iteration, the node with
The rst problem we consider is retrieving images of peopleihe minimum sum of edge weights withBis removed, and
within large databases of captioned news images. Typicall)f,(si) is computed. The subs&f with the highest encoun-
when searching for images of a certain person, a system (ired density, which is at least half of the maximal density
queries the database for captions containing the name, (iﬂtharikar, 2000), is returned as the densest component.
nds the set of faces in those images given a face detec- |, guillaumin et al. (2008), we have introduced a modi-
tor, and (iii) ranks the faces based on (visual) similarity, SO¢ation, to incorporate the constraint that a face is only de-
that the images of the queried person appear rstin the "5tpicted once in an image. We consider only subetsith
An example of a system which uses the rst two stages it most one face from each image, and initiaBseith the
Google Portrait (Marcel et al., 2007). . faces that have the highest sum of edge weights in each im-
As observed in Guillaumin et al. (2008), Mensink andzge The greedy algorithm is used to select a subset of these
Verbeek (2008), Ozkan and Duygulu (2006), Sivic et al.taces. However, selecting another face from an image might
4 Our code is available ahttp:/lear.inrialpes.fr/ now yield a higher density fd than the initial choice. Con-
software/ sequently, we add a local search, which proceeds by iterating
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Fig. 6 Comparison of PCA and LDML for 2D projections. The data of only two co-occurring persons are sBotmey SpearandJennifer
Aniston The identity labels given in the central part of the gure show that LDML projections better separate the two persons although the
embedding seems less visually coherent than PCA.

over the images and selecting the single face, if any, whick = fx1;:::;Xg
yields the highest density. The process terminates when all
nodes have been considered without obtaining further in- p(F) = p( )p(Fj ): 9)
creases. =0

We de ne the weightsv; following Guillaumin et al. Sy .
(2008) and use the distances between the face represen?é-':] )= - p(xij ); (10)
tions to build an -neighbour graph or &-nearest neigh- =
bours graph. In-graphs, weights are setw; = 1 if the (xij ) = Pec(fi) = N (Xi; Bs, Bg) If 6 1)
distance betweehandj is below a certain threshold and piXi) ) = Pea(fi) = N (Xi; re;, ro) if =i

0 otherwise. Irk-nearest neighbours graphg; =1 if i is

. . . We use a prior over which is uniform over all non-zero
among thek closest points t§ or vice-versa.

assignments, i.ga( =0)= andp( =i)=( )=F

we use diagonal covariance matrices for the Gaussians. The
parameters of the generic background face model are xed
to the mean and variance of the faces in the result set of
the text-based query. Although using a mixture of Gaus-
sians would better model generic faces, we use only one
Gaussian to avoid that a component of the mixture mod-

] ] els the foreground class. We estimate the other parameters
Inthe Gaussian mixture model approach, the search problep. rs; Fog, Using the EM algorithm. The EM algorithm

is viewed as a two-class clustering problem, where the Gaugs jnjtialised in the E-step by using uniform responsibili-
sian mixture is limited to just two components{. Guillau-  tjes over the assignments, thus emphasizing faces in doc-
min et al. (2008): one foreground model representing theyments with only a few other faces. After parameter opti-
queried person, and one generic face model. mization, we use the assignment maximizp{gjF ) to de-

For each image in the result set of the text-based quer§ermine which, if any, face represents the queried person.
we introduce an (unknown) assignment variabl® repre-
sent which, if any, face in the image belongs to the querie L
person. An imag)(/a withr face detegtions ha?sF +1) pgs- %'3 Discriminant method

S'bl_e assignments: selecting one of tRefaces, or none The motivation for using a discriminant approach is to im-

¢ =0). prove over generative approaches like the Gaussian mixture,
Marginalizing over the assignment variablea mixture  while avoiding the explicit computation of the pairwise sim-

model is obtained over the features of the detected faceakrities as in Guillaumin et al. (2008), Ozkan and Duygulu

5.2 Gaussian mixture model approach
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(2006), which is relatively costly when the query set con-“friends” of the queried person. For each friend we use only
tains many faces. We chose to use sparse multinomial logigmages in which the queried person does not appear in the
tic regression (SMLR, Krishnapuram et al. (2005)) since wecaption. We use at most 15 friends for a query, and for each

are using high-dimensional face features. friend there should be at least 5 images.
Still denoting features witlt, and class labels with 2 It is not obvious to exploit this idea in the graph-based
f FG; BGg, the conditional probability of givenx is de- approach using the densest component. One idea would be
ned as a sigmoid over linear score functions to add faces of friends in the graph, and only add nega-
tive edge weights between faces in the query expansion and
p(y = FGx) = (Wggx); (12)  faces obtained using the original query. However, since the

. . . o . graph density depends only on the edges between the se-
\(/:V;riﬁne(o? vlvs;tr? Z :Z(:)IZE(;r;risoercvt\llﬁirlr? Sr.o;r:)ie“skter:EzggrlssitJeCtEd nodes, this yields the same solution as in the original
h (selecti face f h i I
of the parametersi(w) / exp( kwky), wherek k; de- graph (selecting a face from the expansion can only decrease

. - the density due to the negative edge weights). Potentially, we
notes the L norm, and is set by cross-validation. y g g ghts) y

. ) could bene t from query expansion by nding concurrentl
To learn the weight vectors we use the noisy set of posi- query exp y g y

i I - FG)f th It set of the text-based a densest component for the queried person and each of its
lve examplesy( = ) from the result set of the text-base friends: essentially this is the idea that is explored in Section

query and a random sample of faces from the databases g%o establish all name-face associations. In the current sec-

pegatlvg exampley (= BG). To tgke into account that each tion we describe the use of query expansion in the Gaussian
image in the query may contain at most one face of th?‘nixture and discriminative approaches
queried person, we alter the learning procedure as follows. '

We learn the classi er iteratively, starting with all faces in
the result set of the text-based query as positive example
and at each iteration transferring the faces that are least like,

; » . he rst way to use the query expansion in the Gaussian
to be the queried person from the positive to the negative seL. . . .
. . .~ mixture model is to tthe background Gaussian to the query
At each iteration we transfer a xed number of faces, which

expansion instead of the query set. So the background Gaus-

Id involve several f from men lon her . . . .
could involve several faces from a document as long as t CISian will be biased towards the “friends” of the queried per-

remains at least one face from each document in the positive N . .
N . .. son, and the foreground Gaussian is less likely to lock into
set. The last condition is necessary to avoid that a trivial :
. . : . one of the friends.
classi er will be learned that classi es all faces as negative.

. : The second way to use query expansion, is to create
Once the classi er weights have been learned, we SCOTE mixture background model, this forms a more detailed
the(F +1) assignments with the log-probability of the cor- 9 '

; . N query-speci ¢ background model. For each friemémong
responding classi er responges, e.g. for= 1 the score h friend v th hod with
would beln p(y; = FGjxy) + F N o(yi = BGix;) the N friends, we apply the method without query expan-
i=2 : ' sion while excludingimages that contain the queried per-

son in the caption. These “friend” foreground Gaussians are
added to the background mixture, and we include an addi-
tional background Gaussian

§.4.1 Query expansion for Gaussian mixture ltering

5.4 Query expansion

Using ideas from query expansion, the search results can 1
be considerably improved, as we showed in Mensink an®sc(f) = N+1 N X5 ny n)s (13)
Verbeek (2008). The query expansion framework brings us n=0
somehow closer to the complete name-face association prowheren = 0 refers to the generic background model. We
lem discussed in Section 6. The underlying observation iproceed as before, with a xepks and using the EM algo-
that errors in nding the correct faces come from the confu-rithm to nd pgc and the most likely assignmentin each
sion with co-occuring people. image.
For example, suppose that in captions for the qUery
Blair the namesGeorge BustandGordon Brownoccur of-  5.4.2 Query expansion for linear discriminant ltering
ten. By querying the system f@eorge Bushand Gordon
Brownwe can then rule out faces in the result set from theThe linear discriminant method presented in Section 5.3 uses
text-based query fofony Blair that are very similar to the arandom sample from the database as negative examples to
faces returned foGeorge Buslor Gordon Brown See Fig-  discriminate from the (noisy) positive examples in the query
ure 7 for a schematic illustration of the idea. set. The way we use query expansion here is to replace this
We therefore extend the result set of the text-based quemandom sample with faces found when querying for friends.
by querying the database for names that appear frequenti¥hen there are not enough faces in the expansion set (we
together with the queried person; we refer to these people asquire at least as many faces as the dimensionality to avoid
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Fig. 7 Schematic illustration of how friends help to nd people. The distribution of face features obtained by querying captions for a name (left),
the query expansion with color coded faces of four people that co-occur with the queried person (middle), and how models of these people help to
identify which faces in the query set are not the queried person (right).

trivial separation of the classes), we use additional randomlg.1 Graph-based approach

selected faces.
In the graph-based approach to single-person face retrieval,

the densest subgrafghwas searched in the similarity graph

G obtained from faces returned by the text-based query. We
6 Associating names and faces extend this as follows: the similarity gragh is nhow com-

puted considering all faces in the dataset. In this graph, we

In this section we consider associating names to all the facégarch simultaneously for all subgrapBs corresponding

in a database of captioned news images. For each face W@names, indexed hy.

want to know to which name in the caption it corresponds, As already noted, the number of example faces for dif-
or possibly that it corresponds to none of themudl assign- ~ ferent people varies greatly, from just one or two to hun-
ment. In this setting, we can use the following constraintsdreds. As a result, optimising the sum of the densities of
(i) a face can be assigned to at most one name, (ii) this nanfibgraphsS, leads to very poor results, as shown in Guil-

to at most one face in a given image. to assign an equal number of faces to each name, as far as

lowed by the constraints, and therefore does not work well
r very frequent and rare people. Instead we maximise the
sum of edgg(wei)g(hts within each subgraph

This task can be thought of as querying simultaneouslxajI
for each name using a single-person retrieval method whic
would comply with (ii) and (iii). But doing so in a straight-
forward manner, the results could violate constraint (i). ThisF (f S, g) = Wi : (14)
approach would also be computationally expensive if the noij2s,

data set contains thousands of different people, since eagiyie that whemw; = 0 this criterion does not differentiate
face is processed for each query corresponding to the Namggween empty clusters and clusters with a single face. To
in the caption. Another bene t of resolving all name-face 5 clusters with a single associated face, for which there
associations together is that it will better handle the manye no other faces to corroborate the correctness of the as-
people that appear just a few times in the database, say 'e§i§nment, we saw; to small negative values.
than 5. For such rare people, the methods in Section 5 are” Then the subgrapt®, can be obtained concurrently by
likely to fail as there are too few examples to form a Cleardirectly maximizing Eq. (14), while preserving the image
cluster in the feature space. constraints. Finding the optimal global assignment is com-
Moreover, the discriminative approach for retrieval isputationally intractable, and we thus resort to approximate
impractical to adapt here. A straghtforward model would remethods. The subgraphs are initialized with all faces that
place Equation 12 with a multi-class soft-max. This wouldcould be assigned, thus temporarily relaxing constraint (i)
imply learningD weights for each of the classé, people.  and (jii), but keeping (ii). Then we iterate over images and
For rare people, this approach is likely to fail. optimise Eq. (14) per image. As a consequence, (i) and (iii)
Below, we describe the graph-based approach presentade progressively enforced. After a full iteration over im-
in Guillaumin et al. (2008) in Section 6.1, and the constrainedges, constraints (i), (ii) and (iii) are correctly enforced. The
mixture modeling approach of Berg et al. (2004) in Sec-teration continues until a xed-point is reached, which takes
tion 6.2. Both methods try to nd a s&, of faces to as- in practice 4 to 10 iterations.
sociate to each namg the task is therefore seen as a con-  The number of admissiple assignments for a document

strained clustering problem. with F faces andN namesis MM FN) o F Np , and thus

p=0
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quickly becomes impractically large. For instance, our fully-
labeled data set contains a document Witk 12 faces and

N = 7 names, yielding more than 11 million admissible
assignments. Notably, the ve largest documents account for
more than 98% of the number of admissible assignments to
be evaluated over the full dataset. f L \ .

Given the fact that assignments share many common f, fo T R 3
sub-assignments, a large ef ciency gain can be expected by
_nOt re_evallflatmg, the S_hared SUb_aSSIQnment,S' We therefoE%. 8 Example of the weighted bipartite graph corresponding to a
introduced in Guillaumin et al. (2008) a reduction of the op-gocument with two faces and three names. For clarity, costs are not
timisation problem to a well-studied minimum cost match-indicated, and edges between vertices and thdlrcopies are dotted.
ing in a weighted bipartite graph (Cormen et al., 2001). ThigAn e_xample of a match@ng‘solution is given with the highlighted lines,
modelling takes advantage of this underlying structure a”ﬁs'iiéﬁtﬁ;pgﬁifs assigning fate to namens, f2 to ny, and not
can be implemented ef ciently. Its use is limited to objec-
tives that can be written as a sum of “costéf; n ) for as-
signing face to namen. The corresponding graphical rep-
resentation is shown in Figure 8.

The names and faces problem differs from usual bipar-
tite graph matching problem because we have to take into
accountnull assignments, and thisull value can be taken 1 ozn2) 1 oafa) oz fa)
by any number of faces in a document. This is handled by 1 1 c(fz;n3) c(n3;f1) c(nz;f2)
having as manyull nodes as there are faces and names. A
facef can be paired with any name or its own copynaofl, Fig. 9 Example of thés 5 cost matrix representing the bipartite graph
which is writtenf , and reciprocally, a namecan be paired matching formulation of document-level optimization for the Kuhn-

. . : - - Munkres algorithm, for a document with two faces and three names.
with any face or its own copy dfull, written. A pairing The costx(f;;n;j) are set to the negative sum of similarities frém

betweenf andn will requ"? the pairing_ offt andf be—. _ tovertices in the subgrash, , c(f;; fi) are set to a constant threshold
cause of document constraints. The weights of the pairing@lue , andc(nj; ) are set to zero. Fax(nj; n; ), this is because we

are simplpg the costs of assigning a fdgeto the subgraph do not model any preference for using or not certain subgraphs. In nite
S,.ie. ,s Wi, oOr tonull. poEFsh?cilzugt for absence of vertex. The same solution as in Figure 8

A bipartitJe grnaph matching problem is ef ciently solved 's higiignie.
using the Kuhn-Munkres algorithm (also known as the Hun-
garian algorithm) which directly works on a cost matrix. The g
cost matrix modeling our document-level optimization is a 3 ' ' '
squared matrix wit + f rows and columns where the ab- £ [ Brute-force ' |
sence of edge is modeled with in nite cost. The rows repre-=
sent faces andull copies of names, while columns representé
names andull copies of faces. See Figure 9 for a exam-
ple cost matrix modeling our matching problem. It is then 2
straightforward to obtain the minimum cost and the corre-g
sponding assignment, as highlighted in the example matrixga

In Figure 10 we show how the processing time growsg 102
as a function of the number of admissible assignments in &
document for the Kuhn-Munkres algorithm compared to ag
“brute-force” loop over all admissible assignments. For ref-£
erence, we also include the min-cost max- ow algorithm of & 10% 0 o s
Guillaumin et al. (2008), but it is slower than Kuhn-Munkres
because the solver is more general than bipartite graph match-

2 o(f1in) c(fing) fsing) offsifn) 1
gc(fz;nl) c(f2;n2) c(f2;n3) 1 c(fz;fz)é

c(n;n1) 1 1 c(n1; F1) (i fa)

millise

Max- ow

Kuhn-Munkres

ocu

104

Number of admissible assignments in document

Ing. Fig. 10 Average processing time of the three algorithms with respect
to the number of admissible assignments in documents. The average is
. . computed over 5 runs of randoms costs, and over all documents that
6.2 Gaussian mixture model approach have the same number of admissible assignments. The Kuhn-Munkres
algorithm combines low overhead and slow growth with document
In order to compare to previous work on naming faces ircomplexity. Note that there is a log scale on both axes.

news images (Berg et al., 2004), we have implemented a
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constrained mixture model approach similar to the genera? Experimental results

tive model presented in Section 5.2. We associate a Gaussian

density in the feature space with each name, and an addiVe present our experimental results in three parts. In the
tional Gaussian is associated withll. The parameters of rst, we use theLabeled Faces in the Wildata set to study
the latter will be xed to the mean and variance of the en-the in uence of parameters of the face descriptor and learned
semble of all faces in the data set, while the former will besimilarity measures. Then, using ouabeled Yahoo! News
estimated from the data. The model for an image with facegata set, we evaluate our different methods for retrieval of

F = fx1;:::;Xr gis the following faces, and associating names and faces. In these experiments,
X we also consider the impact of using learned metrics for
p(F) = p( )p(Fj ) (15) these tasks.
¥ . Lo
p(Fj )= p(xij ) (16) 7.1 Metrics for face similarity
i=1
p(Xij )= N(Xi: n; n) (17)  In this section we analyse the performance of our face de-

scriptor with respect to its main parameters. This is done on
wheren is the name (onull) as given by the assignment Labeled Faces in the Wijdo avoid over tting on our data
(xi;n) 2 . Given the assignment we have assumed thset and tasks. Evaluation on thabeled Faces in the Wild
featuresx; of each facef; to be independently generated data set is done in the following way. For each of the ten
from the associated Gaussian. The prior dn uences the folds de ned in the data set, the distance between the 600
preference ohull assignments. Using paramete2 R, we  pairs is computed after optimizing it on the nine other folds,

de ne when applicable. This corresponds to the “unrestricted” set-
ting, where the faces and their identities are used to form

exp( n ) all the possible negative and positive pairs. The Equal Er-

()= cexp( no) I exp( n ) (18) ror Rate of the ROC curve over the ten folds is then used as

accuracy measure, see Huang et al. (2007b).

. . . The following parameters are studied:
wheren is the number ofull assignments in. For =0, 9p

the prior is uniform over the admissible assignments. 1. The scales of the descriptowWe compare the perfor-
We use Expectation-Maximisation to learn the maximum ~ mance of each individual scale (see Figure 5) indepen-
likelihood parameters,,, , and from the data. This re- dently, and their combination.

quires computing the posterior probabilify jF ) for each 2 The dimensionality of the descriptdExcept for the Eu-
possible assignmentfor each image in the E-step, which is clidean distance, using more than 500 dimensions is im-
intractable. Instead, we constrain the E-step to selecting the Practical, since metric learning involves algorithms that
assignment with maximum posterior probability. This pro-  Scale a®(D?) whereD is the data dimensionality. More-
cedure does not necessarily lead to a local optimum of the ©OVer, we can expect to over t when trying to optimize
parameters, but is guaranteed to maximize a lower bound ©Vver & large number of parameters. Therefore, we com-
on the data likelihood (Neal and Hinton, 1998). Moreover, Paredin Figure 11 the performance of metric learning al-
compared to an expected assignment, the a posteriori maxi- 90rithms by rst reducting the data dimensionality using

mum likelihood assignment de nes a proper naming of the ~PCA, t0 35, 55, 100, 200 and 500 dimensions. LDML is
faces in the documents. also able to learn metrics with this reduced dimensional-

ity directly.
3. Metrics for the descriptorWe compare the following
measures: Euclidean distance (L2), Euclidean distance
after PCA (PCA-L2), LDML metric after PCA (PCA-
LDML), LMNN metric after PCA (PCA-LMNN), ITML
metric after PCA (PCA-ITML), and nally Euclidean
distance after low-rank LDML projection (LDML-L2).

This model is straightforwardly framed into the bipar-

tite graph matching formulation. The cos($; n ) are set to
INnN(X; n; n),wherex represents fack in the feature

space, and the cost of not associating a face to a name is
cf; f)= INnN(X; nui; nu)+ . Null assignments are
favored as decreases.

The generative model in Berg et al. (2004) incorporates
more information from the caption. We leave this out here, In Figure 11, we present the performance labeled
so we can compare directly with the graph-based methodtaces in the Wilaf the different metrics for each individual
Caption features can be incorporated by introducing addiscales of the descriptor, as a function of the data dimension-
tional terms that favor names of people who are likely toality. As a rst observation, we note that all the learned met-
appear in the image based on textual analysisesgdain  rics perform much better than the unsupervised metrics like
et al. (2007). L2 and PCA-L2. The difference of performance between
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Fig. 12 Accuracy of LDML projections over a wide range of space
dimensionalities, for scale 3, the combination of scale 2 and 3, and the
three scales.

learned metrics is smaller than the gap between learned met-
rics and unsupervised ones.

When comparing performance obtained with the differ-
ent scales, we see that scales 2 and 3 perform similarly, and
better than scale 1. The combination of the scales brings an
improvement over the individual scales.

From Figure 11, we also observe that metric learning
methods benet from pre-processing with larger PCA di-
mensionalities up to 200 dimensions. For low dimension-
alities, the methods are limited by the weak discriminative
power of PCA. We can observe a hierarchy of methods:
PCA-LDML performs better than PCA-LMNN, which itself
performs better then PCA-ITML. But the difference is rarely
more than 2% between PCA-ITML and PCA-LDML below
200 dimensions. Performances seem to decrease when the
data dimensionality is above 200, which might be due to
over tting. For ITML, the drop can be explained by unop-
timized code which required early stopping in the optimisa-
tion. Keeping 100 to 200 PCA dimensions appears as a good
trade-off between dimensionality reduction and discrimina-
tive power. When using LDML for supervised dimensional-
ity reduction, the performance is maintained at a very good
level when the dimension is reduced, and typically LDML-
L2 is the best performing method in low dimensions.

The performance of LDML-L2 for dimensionalities rang-
ing from 1 to 500 can be seen in Figure 12, with an illustra-
tion already shown in Figure 6. We show the in uence of tar-
get space dimensionality on performance for the best scale
(the third), the two best scales (second and third) and all
three scales together. We can clearly observe that combining

Fig. 11 Comparison of methods for the three scales of the face descales bene ts the performance, at the expense of a higher
scriptor and the concatenated descriptor of all three scales. We shasimensional input space. Notably, adding scale 1 does not

the accuracy of the projection methods with respect to the dimensiorg
ality, except for L2 where it is irrelevant. Scales 2 and 3 appear moré

eem to have any signi cant effect on performance. The ac-

discriminative than scale 1 using learned metrics, and the concaten§Hracy of our method, 83.5%, compares to other state-of-

tion brings an improvement. Except for scale 1, LDML-L2 performs the-art published methods on the unrestricted settirigaof
best on a wide range of dimensionalities.

beled Faces in the Wil@laigman et al. (2009)), but performs
slightly worse than Kumar et al. (2009) (85.3%). However,
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L2-2304D | PCA-100D | LDML-100D | original face descriptor, and its performance is only slightly
SM;‘;ﬂ”&grielset 80,1 86.1 88,3 modi ed when using dimensionality reduction techniques.
Expansion set 88.8 86.6 88.6 This can be explained by the fact that the SMLR model it-
Generative model self is nding which dimensions to use, and both PCA and
Query set 69.4 85.0 91.3 LDML have less dimensions to select from.
Eﬁgﬁﬂi'gg lf/leif(ture ;g:é gig géig We further observe that the generative method bene ts
Graph-based from both dimension reduction techniques, the performance
eps 74.5 73.6 87.0 of the standard method increases by approximatit&so
kNN 74.9 7l 85.5 using PCA, and around2% using LDML. Altough PCA
Table 1 In this table we give an overview of the mAP scores over 23is an unsupervised dimensionality reduction scheme, the in-
queries for the different methods and features. crease in performance can be explained by the reduced num-

ber of parameters that has to be tand decorrelating the vari-
ables. The best scoring method is the generative method us-
ing a background consisting of a mixture of friends, with

0:8f LDML features. This constitutes an interesting combination
of the discriminatively learned LDML features with a gen-

0:6f erative model.
A - Lo+ Eriends N Finally, in Table 1, we see that the graph-based method

' also greatly takes advantage of LDML features, whereas PCA
I " timtﬂ: _ T dimensionality reduction performs similarly to L2.

riends In Figure 13, we show the precision for several levels of
TT T SMIR recall, again averaged over the 23 queries. The improvement

0

0 02 0:4 0:6 08 1 by using LDML is made again clear, there is an improve-

) . _ _ _ment of more than 20% in precision for recall levels up to
Fig. 13 Precision (y-axis) versus Recall (x-axis) of the Generatlvego%

Methods using Friends or not, and using LDML or L2. For compar- . .
ison we also show the SMLR method. In Figure 14, we show the retrieval results for the gener-

ative approach using PCA or LDML, with or without mod-

. . . . elling friends. We observe that on a query liBehn-Paul
their descriptor is based on the output of 65 attribute classi- ng trencs serv query .

. II, LDML offers better results than PCA. Modelling friends
ers trained on external and manually annotated face data. .
: . __helps PCA reach the performance of LDML. The friends ex-
In the rest of the experiments, we will use the descripto

o , . .
. tension is mainly advantageous for the most dif cult queries.
composed of scale 2 and 3 only, because it is 2304D co y 9 q

. . "Erom the faces retrieved by the text-based querySad-
pared to 3456D for the full descriptor, without any loss Ofdam Husseifthe majority is in fact from George Bush. Us-

performance. In the following section, we compare the per-

. ing LDML, it is not surprising that the model focuses even
formance of the raw descriptor to 100D PCA and LDML 9 - surp 9 . .
S ) . more strongly on images of Bush. Using friends, however,
projections for the two tasks considered in the paper.

we speci cally model George Bush to suppress its retrieval,
and so we are able to nd the faces of Saddam Hussein.

7.2 Experiments on face retrieval

In this section we describe the experiments for face retrieval.3 Experiments on names and faces association

of a speci ¢ person. We use the training setlafbeled Ya-

hoo! Newsto obtain PCA and LDML projections for the For solving all names and faces associations in images, we

data, apply them to the test set and query for the 23 persarlso use the training and test sets, which are disjoint in the

mentioned in Section 3.2. The train set and test set are corfdentities of the persons. We learn the similarity measures

pletely disjoint, none of the individuals in the test set occurausing LDML and PCA on the training set. Then, we apply on

in the train set. the test set the methods described in Section 6 and measure
In our experiments we compare the original features (L2their performance. We call the performance measure we use

2304D), PCA with 100D and LDML with 100D. We eval- the “naming precision”. It measures the ratio between the

uate the methods using the mean Average Precision (mAP)umber of correctly named faces over the total number of

over the 23 queries. named faces. Recall that some faces might not be named by
In Table 1 we show the results of the described meththe methodsr{ull-assignments).

ods, using the 3 different similarity measures. We observe Concerning the de nition of weights for the graph, we

that the SMLR model obtains the best performance on théound that usingwv; = d(xi; x;) yields more stable
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Fig. 14 First fourteen retrieved faces for the querdesin-Paul Il (top) andSaddam Husseifbottom) using the generative approach. We highlight
in green the correctly retrieved faces and in red the incorrect ones. This shows the merit of metric learning for most queries and illustrate the
necessity of modelling friends for dif cult queries.

results than the binary weights obtained usings a hard done by exploring the parameter space in a dichotomic way
threshold for the distance value. This is simply because thi® obtain fty points in regular intervals.

thresholding process completely ignores the differences be- | Figure 16, we show the performance of the graph-
tween values if they fall on the same side of the thresholdyased approach (Graph) compared to the generative approach
The value of in uences the preference ofull assignments. of mixture of Gaussians (Gen.) for 100 dimensional data,

If is high, faces are more likely to have positive weightsobtained either by PCA or by LDML. We also show the per-
with many faces in a cluster, and therefore is more likely tofgrmance of L2j.e. the Euclidean distance for the graph and

be assigned to a name. At the opposite, with a sma#l  the original descriptor for the generative approach.

given face is more likely to have negative similarities with We can rst observe that PCA is comparable to the Eu-
most faces in admissible clusters, and therefore is less likely; yoan distance for the graph-based approach. This is ex-
to be associated tg any name. Slmllquy, We can vary th.e p"jb'ected since PCA effectively tries to minimize the data re-
rameter of the prior for the generative approach as IVENeonstruction error. The generative approach bene ts from

ir? Eq. (18). For both approaches, we plot the naming pr,eCit'he reduced number of parameters to set when using PCA
sion for a range of possible number of named faces. This Ifirojections, and therefore PCA is able to obtain better clus-

tering results, up to 10 points when naming around 5000
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PCA-100d | LDML-100d _ 1. George W. Bush
Graph-based 2 2.null
Correct: name assigned 6585 7672 — 3.Tony Blair
Correct: no name assigned 3485 4008 < 1. George W. Bush
Incorrect: not assigned to name 1007 1215 € 2. Junichiro Koizumi
Incorrect: wrong name assigned 3750 1932 3. Tony Blair
Generative model
Correct: name assigned 8327 8958 1. null
Correct: no name assigned 2600 2818 S 2. Natalie Maines
Incorrect: not assigned to name 765 504 8§ 3. Emily Robison
Incorrect: wrong name assigned 3135 2547 4. Martie Maguire
1.null
Table 2 Summary of names and faces association performance ob- é 2. Natalie Maines
tained by the different methods when the maximum number of cor- 3. Martie Maguire
rectly associated names and faces is reached. 4. Emily Robison
~ Ll.null
Z 2. Tony Blair
faces. We also observe that LDML performs always better — 3.Jiang Zemin
than its PCA counterpart for any given method. The increase s % TDaV'dB'f‘?“y
in performance is most constant for the generative approach, &3 Ji(;% Zg'r;in
for which the precision is approximatively 10 points higher.
For the graph-based approach, up to 16 points are gained 2 1. Saddam Hussein
around 8700 named faces but the difference is smaller at 5 g-éOth\aNamer
the extremes. This is because the precision is already high T B Ere
with L2 and PCA when naming few faces. When naming al- § 2. Paul Bremer
most all faces, the parameteof the graph-based method is 3. Saddam Hussein

too high so that most faces are considered similar. Therefore

the optimisation process favors the largest clusters when agy. 15 Four document examples with their naming results for LDML-
signing faces, which decreases the performance of all grapho0d and PCA-100d when the maximum number of correctly associ-
based approches. ated names and faces is reached. The correct associations are indicated

For both iecti thod dforth iginal d ._in bold. On these examples, the names that can be used for associa-
or both projection methods and for the original descriPs;g, with the faces are all shown: they were used by LDML or PCA,

tor, the graph-based approach performs better than the gegi-both. Typically, LDML is better at detecting null-assignments and is
erative approach when fewer faces are named, whereas there precise when associating a face to a name.

generative approach outperforms the graph-based when more
faces are named. The latter observation has the same expla-
nation as above: the performance of graph-based methods
decreases when it names too many faces The former was °%8
expected: when too few faces are assigned to clusters, the es-
timation of the corresponding Gaussian parameters are Ie‘sfs o6t
robust, thus leading to decreased performance.
Finally, in Table 2, we show the number of correct and £
incorrect associations obtained by the different methods, usg
ing the parameter that leads to the maximum number of cor-
rectly associated names and faces. In Figure 15, we show 02}
qualitative results for the comparison between LDML-100d
and PCA-100d for our graph-based naming procedure. These
dif cult examples show how LDML helps detecting null-
assignments and performs better than PCA for selecting the
correct association between faces and names.

1r

pre

L2, Graph
PCA-100D, Graph
LDML-100D, Graph
L2, Gen.

----- PCA-100D, Gen.
----- LDML-100D, Gen.

0:4+

0 2000 4000 6000 8000 10000 12000

Number of named faces

Fig. 16 Precision of LDML and PCA-L2 with respect to the number of
assigned faces, obtained by varying the threshold, for 100 dimensions.
This plot is similar in spirit to a precision-recall curve.

8 Conclusions

In this paper, we have successfully integrated our LDML
metric learning technique (Guillaumin et al., 2009b) to im-
prove performance of text-based image retrieval of people (Guil-
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laumin et al., 2008, Mensink and Verbeek, 2008, Ozkan an8arnard, K., Duygulu, P., Forsyth, D., de Freitas, N., Blei, D., Jordan,
Duygulu, 2006), and names and faces association in news M.: Matching words and pictures. Journal of Machine Learning

: . Researcl!8, 1107-1135 (2003)
photographs (Berg et al., 2004, Guillaumin et al., 2008). Bekkerman, R., Jeon, J.: Multi-modal clustering for multimedia col-

Using the well studied.abeled Faces in the Wildata lections. In: CVPR (2007)
set (Huang et al., 2007b), we have conducted extensive eerg, T., Berg, A., Edwards, J., Maire, M., White, R., Teh, Y., Learned-
periments in order to compare metric learning techniques Miller, E., Forsyth, D.: Names and faces in the news. In: CVPR
for face identi cation and study the in uence of the param- Berg, T., Forsyth, D.: Animals on the web. In: CVPR (2006)

eters of our face descriptor. These experiments extend amgértsekas, D.: On the Goldstein-Levitin-Polyak gradient projection
improve over Guillaumin et al. (2009b). method. IEEE Transactions on Automatic Cona(2), 174-184
In order to measure the performance of our retrieval and (1976)

. t techni h full tated a dat tBrfessan, M., Csurka, G., Hoppenot, Y., Renders, J.: Travel blog as-
assignment techniques, we have Iully annotated a data Set Ol gjqiant system. In: Proceedings of the International Conference on

around 20000 documents with more than 30000 faces (Guil- computer Vision Theory and Applications (2008)

laumin et al., 2010). This data set is publicly available forBuckley, C., Salton, G., Allan, J., Singhal, A.: Automatic query expan-
ion using SMART: TREC 3. In: Proceedings of the Text Retrieval

fair and standardised future comparison with other approaches

. . P .pp %onference, pp. 69-80 (1995)
_ L_JSIng this data set, we have shown that_ metric learncharikar, M.: Greedy approximation algorithms for nding dense com-
ing improves both graph-based and generative approachesponents in a graph. In: Proceedings of International Workshop Ap-

for both tasks. For face retrieval of persons, we have im- proximation Algorithms for Combinatorial Optimization, pp. 139-

‘i _ _152 (2000)
proved the mean average precision of the graph-based thopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric dis-

prc_)ach from 77% using PCA projeqtion to_mqre than 87% " criminatively, with application to face veri cation. In: CVPR (2005)
using LDML. Using the metric learning projection, the per- Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall:
formance reaches 95% when using a generative approachAutomatic query expansion with a generative feature model for ob-

~ : : ject retrieval. In: ICCV (2007)
that also models people frequently co-oceurrng with theCormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algo-

queried person, compared to 80% with the original descrip- yithms, Second Edition. The MIT Press and McGraw-Hill (2001)
tor. Davis, J., Kulis, B., Jain, P., Sra, S., Dhillon, I.: Information-theoretic

For names and faces association, we have attained pre-metric learning. In: ICML (2007)

i O/ /i ) mpster, A., Laird, N., Rubin, D.: Maximum likelihood from incom-
cision levels above 90% with the graph-based approach, a‘I'Poeplete data via the EM algorithm. Journal of the Royal Statistical

around 87% for the generative approach, which is in both gqgjety. Series B (Methodologic&8(1), 1-38 (1977)
cases 6 points above the best score obtained using PCBeschacht, K., Moens, M.: Ef cient hierarchical entity classi cation
Since these maxima are attained for different numbers of using conditional random elds. In: Proceedings of Workshop on

. ‘o _ Ontology Learning and Population (2006)
named faces, the generative approach is in fact able to ¢ Veringham, M., Sivic, J.. Zisserman, A.: “Hello! My name is... Buffy’

rectly name a larger number of faces, up to almost 9000 . aytomatic naming of characters in TV video. In: BMVC (2006)
faces. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object cate-
In future work, we plan to use the caption-based super- 9°ries. PAMI28(4), 594-611 (2006) _ _
.. . . . Ferencz, A., Learned-Miller, E., Malik, J.: Learning to locate informa-
vision to alleylate the need fqr manual gnnotanon for met.rlc tive features for visual identi cation. 1JCV7, 3-24 (2008)
learning. This could be obtained by using the face namingergus, R., Fei-Fei, L., Perona, P., Zisserman, A.: Learning object cat-
process for automatically annotating the face images, or by egories from Google's image search. In: ICCV, vol. 10, pp. 1816-
casting the problem in a multiple instance learning frame-_ 1823 (2005) _
K Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Il-
WOrK. lumination cone models for face recognition under variable lighting
and pose. PAMR6(6), 643—660 (2005)
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