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Abstract. InfiniBand high performance networks require that the
buffers used for sending or receiving data are registered. Since memory
registration is an expensive operation, some communication libraries use
caching (rcache) to amortize its cost, and copy data into pre-registered
buffers for small messages. In this paper, we present a software protocol
for InfiniBand that always uses a memory copy, and amortizes the cost
of this copy with a superpipeline to overlap the memory copy and the
RDMA. We propose a performance model of our protocol to study its be-
havior and optimize its parameters. We have implemented our protocol
in the NewMadeleine communication library. The results of MPI bench-
marks show a significant improvement in cache-unfriendly applications
that do not reuse the same memory blocks all over the time, without
degradation for cache-friendly applications.

1 Introduction

InfiniBand networks are nowadays the leading technology for high perfor-
mance networks in clusters. Parallel applications usually exploit this network
through an Mpi library that makes their usage seamless for the end-user. Under
the hood the Mpi implementations access the InfiniBand network cards through
an Api called verbs. Unlike Api used to program other networking technologies,
the verbs Api is very low-level. It means that a lot of things have to be done by
hand by the Mpi library programmer; on another hand, the programmer has a
lot of control on how to exploit the network interface.

Network transfers are based on RDMA and are executed by the DMA engine
on the network card. The card sees the system from the PCIe bus, thus works
with physical addresses. The application, Mpi library, and InfiniBand software
stack run in user space, with no system call involved thanks to OS bypass. Since
they run in user space, they use virtual addresses. Thus, when sending data from
user space through InfiniBand, translation has to be done from virtual address
space to physical address space. The network card can do the translation if
it has been told previously the mapping from virtual to physical space. This
process is called memory registration and in InfiniBand it has to be performed
explicitly by the user. Actually, the memory registration is comprised of both the
communication of the translation table to the network card, and memory pinning
to prevent swapping. All memory involved in sending and receiving operations
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Fig. 1. Registration and memory copy performance comparison on cluster graphene.

in InfiniBand must be registered. Two approaches are possible to satisfy this
constraint: register memory blocks on the fly; register a buffer at application
startup, then copy data into this pre-registered buffer. Memory registration has
a significant cost [1] and both approaches have an impact on the overall network
performance.

In this paper, we present a software protocol for InfiniBand that copies data
through a pre-registered buffer and amortizes the cost of the memory copy by
using a superpipeline to overlap copy and RDMA transfer. We propose a perfor-
mance model of our protocol to study its behavior and optimize its parameters.

The remainder of this paper is organized as follows. In Section 2 we analyze
the performance of memory copy and registration. In Section 3 we present an
analysis of a pipeline for memory copy. In Section 4, we describe our super-
pipeline protocol. Section 5 gives benchmarks results. Section 6 compares our
work to related works. Section 7 concludes our paper.

2 Performance analysis

In this section, we analyze the performance of memory registration, memory
copy, and network transfer, and we propose a performance model.

We run our tests on multiple InfiniBand clusters. Cluster graphene features
ConnectX DDR (MT26418) cards on quad-core nodes equiped with Intel Xeon
X3440. Cluster infini has ConnectX2 QDR (MT26428) cards on quad Intel
Xeon X5570. To visualize closely what happens, all our graphs use a 5% incre-
ment for message size (i.e. powers of 1.05), not only powers of 2 that hide a lot
of details.

Performance of registration. Memory registration in InfiniBand is an expen-
sive operation. We have conducted benchmarks to measure the time consumed
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Fig. 2. Impact of registration and memcpy on communication performance on cluster
graphene.

to register a block of memory on several InfiniBand clusters. For example, the
results obtained on cluster graphene are depicted in Figure 1, represented as a
bandwidth. Let L the length of a given message, we can model the registration
time in the form Treg(L) = λreg+

L
Breg

with λreg the latency of memory registra-

tion, and Breg its bandwidth. On this cluster, we have measured λreg = 68µs.
and Breg = 20GB/s (actually, 200ns per 4KB page). We observe the same
order of magnitudes on other DDR and QDR InfiniBand boards.

The cost of registration may have a huge impact on actual communication
performance. A naive protocol to send a block of data would consist in dynam-
ically registering the memory region, send the data on the network, then dereg-
ister the memory region; the receiver has to perform registration/deregistration
too. The performance of such a protocol is depicted in Figure 2 for cluster
graphene. We observe that the overhead introduced by memory registration
lowers the bandwidth by as much as 60% for packets of roughly 64KB, and is
far from negligible even for larger sizes of messages, with an apparent bandwidth
converging asymptotically to 1

1

Bnet
+ 1

Breg

, which is 91% of the network bandwidth

on our cluster.

Performance of memory copy. Performance of a raw memcpy is depicted in
Figure 1. The apparent bandwidth decreases when the size of data increases, as
a result of cache effects. We can roughly model its behavior with four different
bandwidth figures for L1, L2 and L3 caches, and memory. It would require to
know actual cache policy and associativity to get a more precise model.

A naive copy-based protocol would copy data on the sender side into a reg-
istered memory zone, send the data, then copy the data from the registered
memory zone into its final destination in the receiver side. Since memory copies
are fast for small messages, this copy-based protocol is usually used for small
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Fig. 3. Pipeline for memory copy: sender copies chunk 3 while sending chunk 4; receiver
copies chunk 2 while receiving chunk 3.

messages sent eagerly. Larger messages are usually [2] sent with a rendezvous

protocol to avoid copies that would lower the available bandwidth.
The apparent bandwidth of the naive copy-based protocol is depicted in

Figure 2, converging asymptotically to 1
1

Bnet
+ 2

Bcopy

, which is 57% of the network

bandwidth on our cluster.

Real behavior of rcache. To amortize the cost of memory registration, it has
been proposed a pin-down cache [3], or as commonly called today, a registration

cache (in short: rcache). It means that the sender does not unregister the mem-
ory zone after a message is sent, in case the same zone is sent again. However it
requires a lot of care to be correct [4]. One must use malloc hooks, libc symbol
interception through LD PRELOAD or kernel patches, to invalidate the cache (un-
register memory) when memory is deallocated. These mechanisms are not quite
portable and may break in subtle ways when interacting with various versions
of libc, Fortran or OpenMP runtimes, or any runtime that supplies its own
memory allocator.

It must be noted that rcache does not increase performance by itself. The
first send exhibits the same performance as the naive registration-based proto-
col. Only the subsequent sends of the same memory zone will be faster, at the
nominal speed of the network. The real world performance of rcache depends
on the buffer reuse scheme of the application, and may obviously vary from one
application to another. For example in NAS Parallel Benchmarks, SP and CG

have 99% cache hits, IS has less than 5% cache hits, and LU sends mostly small
messages not concerned by rcache. Our goal is to improve performance of IS

without degrading performance of other benchmarks.

3 Pipelining memory copy

In this section, we study an InfiniBand software protocol which manages memory
registration by copying data into a pre-registered buffer instead of dynamically
registering data in place.

Since copy and RDMAmay be overlapped, a pipeline may be used to amortize
the cost of the memory copy. Both operations share the same memory bus, but
experiments show that copies have a negligible impact on an overlapped RDMA



— memory bandwidth is high these days —, while the copy is slowed down
by no more than the bandwidth used by the network. As depicted in Figure 3,
each message is divided into chunks of a given size. Then on the sender side,
we overlap the RDMA transfer of one chunk with the memory copy of the next
chunk. Since we use RDMA write, on the receiver side nothing has to be done
to make the overlapping happen.

Cost analysis. Let L be the message length, and C the chunk size. For con-
venience, we assume L is a multiple of C. To model the network with multiple
chunks and overlap, we use a model close to LogP [5] with the following nota-
tions. Let λnet be the network latency (the L of LogP) and Bnet the network
bandwidth, then we have Tnet(L) = λnet + L/Bnet as end-to-end transfer time
for a raw RDMA write, assuming data is already registered. Let g be the gap

between messages, then we have Tnet(L1, L2) = λnet +
L1

Bnet
+ g+ L2

Bnet
as trans-

fer time for two packets of length L1 and L2. Let o be the overhead for sending
messages, namely the CPU time needed to initiate the RDMA operation, that
will not be available for overlapping.

In Section 2, we have shown that memcpy bandwidth depends on message
length. Let Bcopy(L) be the copy bandwidth for a message of length L. We must
notice that since the bandwidth depends on cache effects, the length to take into
account is the whole data set, namely L, not C. We assume λcopy = 0. Then we
have Tcopy(L) = L/Bcopy(L) as time to copy data of length L.

Then the time for the full pipelined transfer is comprised of: copy of the first

chunk: C
Bcopy(L) ; steady state with L

C
chunks copied and sent: L

C
×

(

g + C
Bnet

)

;

the network latency: λnet; copy of the last chunk: C
Bcopy(L) . Therefore the total

time of pipelined transfer is:

Tpipeline(L,C) =
2× C

Bcopy(L)
+

L

C
× g + λnet +

L

Bnet

(1)

Compared to a raw RDMA write, the overhead for the pipeline is 2×C
Bcopy(L)+

L
C
×g.

It is comprised of the copy of the first chunk on the sender side, the copy of the
last chunk on the receiver side, and the gaps.

Optimal pipeline. We can find the optimal value for C the chunk size. When
we draw a graph of C → Tpipeline(L,C) for any fixed L and realistic values of
Bcopy and g, we can see this function admits a minimum. If we assume C to be
real instead of integer to make the function differentiable, the derivative with
respect to C for a given message length L is:

T ′

pipeline(C) =
2

Bcopy(L)
−

L

C2
× g (2)

Let Copt be the the optimal chunk size for a given message length L. It
corresponds to the zero of the derivative. We solve the equation and get:

Copt(L) =

√

L× g ×Bcopy(L)

2
(3)
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Fig. 4. Bandwidth model for pipeline using parameters from cluster graphene.
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Fig. 5. Super-pipeline for memory copy: a pipeline with a variable chunk size.

Using our performance models for network and copy, we estimate the per-
formance of the pipeline with optimal chunk size, depicted in Figure 4. The
performance increase compared to naive protocols is huge, but bandwidth is still
lower than raw InfiniBand RDMA and may still be improved. We can see that
for messages smaller than 16KB, the naive copy-based protocol is faster than
the optimal pipeline; when computing the optimal chunk size for these mes-
sages, we get an optimal with less than one chunk per message, which is wrong.
Our hypothesis of C being real instead of integer works only for messages large
enough.

4 Optimizations beyond pipeline: superpipeline

In this Section, we present various mechanisms to improve the performance of
our protocol, beyond the vanilla pipeline with optimal chunk size presented in
the previous Section.

Super-pipeline to lower the number of gaps. Memory copy has a higher
bandwidth than RDMA write over the network, as measured in Section 2. There-
fore, when pipelining, for each chunk memcpy finishes earlier than the RDMA



write for the previous chunk. Thus we propose to increase the chunk size from
chunk to chunk while the pipeline is running. We call this mechanism a super-

pipeline, like superpipelines in CPU architecture. This superpipeline mechanism
is depicted in Figure 5. It is expected to have a lower number of gaps than the
plain pipeline, thus reducing the overhead of the protocol. We must define a
suitable progression rule for the chunk size. Let Ci be the chunk size at step i.
We may compute the sequence that enables a full overlap of memcpy and RDMA;
such a sequence will have the fewest gaps. It is defined as:

Ci+1

Bcopy(L)
=

Ci

Bnet

+ g − o (4)

in other words the time to copy chunk Ci+1 may be as high as the time to send
Ci on the network, including g the gap between packets, but excluding the non-
overlapable overhead o, with o and g as defined in Section 3. Since o and g are
of the same order of magnitude, g− o is at most in the order of 100ns and may
be neglected compared to the other terms when Ci is several kilobytes. Then

Equation 4 simplifies as Ci+1 = Ci×
Bcopy(L)

Bnet
. Therefore, the general term of the

sequence is:

Ci = C0 × qi with q =
Bcopy(L)

Bnet

(5)

To compute the protocol overhead, we need to compute the number of gaps.
Let n be the number of gaps for a given message of length L. Then L, as the
sum of all chunks, is a finite geometric series:

L =

n−1
∑

i=0

Ci = C0 ×
n−1
∑

i=0

qi = C0 ×
1− qn

1− q
(6)

We then solve this equation to get n the number of gaps:

n = logq

(

1 +
L

C0
(q − 1)

)

(7)

Therefore the total transfer time of our superpipeline protocol is:

Tsuperpipeline(L) =
C0 + Cn

Bcopy(L)
+ n× g + λnet +

L

Bnet

(8)

It is very similar to the cost of plain pipeline given in Equation 1, except
that the number of gaps is O(L) for fixed-chunk pipeline, O(

√
L) for pipeline

with the optimal chunk size Copt as defined by Equation 3, and is lowered to
O(log(L)) for superpipeline.

Sub-blocking to lower last chunk copy overhead. The transfer time for
the superpipeline given in Equation 8 includes Cn

Bcopy(L) the time needed to copy

the last chunk at the receiver side. Given the general term of the sequence given
in Equation 5, Cn is expected to be quite large.



To amortize the cost of the copy at the receiver side, we propose a sub-blocking
mechanism — namely, a pipeline in the pipeline — to overlap the RDMA and
the memcpy of the same chunk. Among the possible strategies [6] of the receiver
side to detect the arrival of RDMA data, we chose to poll a flag at a known
memory location. The receiver sets it to zero; the sender writes a 1 through
RDMA.

Our sub-blocking mechanism consists in dividing each chunk into blocks of
a given size b. Every block is comprised of data payload and a flag indicating
the presence of data. All the blocks that form a chunk are sent through a single
RDMA write. The receiver is then able to detect and consume blocks as they
arrive, only one block behind the one being written by the NIC.

With such a method, the cost of the copy at the receiver side is at most the
copy of a block b

Bcopy(L) . This methods adds flags in every blocks, which increases

the size of packets sent on the network and must be taken into account. However,
if we take for example b = 4KB (page size and multiple of MTU) and a flag
on a 64-bit word (to avoid atomicity issues depending on endianness), then the
overhead is less than 0.2%.

Overlap rendezvous to lower first chunk copy overhead. The overhead
of our superpipeline protocol includes the cost of the memory copy for the first
chunk C0. We propose to overlap this copy with the rendezvous to lower its
impact on performance.

We have shown in Section 3 that the optimal number of chunks is 1 for small
messages. The fastest option to send small messages is the naive copy-based
protocol. It means that we will use pipeline (or superpipeline) protocols only
for large messages, that are sent using a rendezvous mechanism to ensure that
data is received in place. It must be noted that, although our protocol involves
a copy, the rendezvous is still relevant because our protocol copies data on the
fly and needs to know where to store data.

The cost of a rendezvous is twice the latency, namely 2 × λnet. We propose
that the sender copies C0 the first chunk of the message while the rendezvous

round-trip takes place. If C0

Bcopy
< 2 × λnet, then the copy of C0 is free. To

maximize overlap in the common case, we chose to use: C0 = Bcopy × 2λnet.
With common contemporary hardware, we get values from 8KB to 16KB for
C0.

Pipeline folding using N-buffering. In our previous descriptions of our su-
perpipeline, we have assumed that the preregistered buffer is as large as the mes-
sage. However, registered memory is a finite resource and cannot be arbitrarily
large. Therefore we fold our superpipeline to fit statically-allocated buffers. Since
at any given time, one buffer is copied while another buffer is sent (or received),
we can then make our superpipeline a double-buffering algorithm. A flow control
mechanism is needed to make sender and receiver synchronize their buffer swaps.
Since such synchronization through network has a significant latency, we loosen
the coupling between the sender and the receiver with triple-buffering. Before



it may send chunk Ci, the sender does not have to wait for the Ci−1 acknowl-
edgment — that may arrive late because of network latency — but for the Ci−2

acknowledgement. Moreover, folding the superpipeline in a smaller workspace
than the full message length improves cache reuse, although the precise impact
is hard to model and to predict.

With all the heuristics and optimizations applied, the total transfer time of
our superpipeline protocol is:

Tsuperpipeline(L) =
b

Bcopy(L)
+ g × logq

(

1 +
L

C0
(q − 1)

)

+ λnet +
L

Bnet

(9)

The overhead for to copy of the last sub-block b is low, and the number of gaps
is O(log(L)).

Discussion. The plain pipeline is easy to model and we have determined ana-
lytically its optimal chunk size, as we did in Section 3. However, the performance
of superpipeline depends on a sequence, not a single value, which makes it dif-
ficult to solve analytically. Optimization depends on a lot of parameters, that’s
why we used heuristics (maximize overlap) to determine q and C0.

Our model is not so precise and some behaviors are hard to predict (cache
effects depend on cache policy, associativity, data alignment). The theoretical
optimal is thus not necessarily optimal once implemented. However when we
trace C0 → Tsuperpipeline(L,C0) for a given L, variations are small around the
optimal. We conclude that not-so-precise tuning works well with superpipeline,
which is confirmed by experience. Hardwired C0=12KB and q = 1.5 gives results
almost as good as optimal values.

5 Benchmarks

In this Section, we present benchmarks of our superpipeline protocol and com-
pare it against other protocols and implementations.

Raw protocol benchmark. We have implemented our superpipeline protocol
in a test program to evaluate its behavior regardless of any other implementation
artefact. The results of a ping-pong bandwidth test on clusters graphene and
infini are depicted in Figure 6. We observe the superpipeline is much faster
than naive registration and memcpy-based protocols, and is very close to the
raw RDMA performance. The overhead compared to raw RDMA is 15% for
16KB messages, and less than 5% for messages larger than 64KB. However this
test program does not implement rendezvous, thus cannot overlap C0 copy and
rendezvous; real-life overhead is then expected to be lower.

MPI micro-benchmarks. We have then implemented our superpipeline proto-
col as a driver in our NewMadeleine [7] communication library, which already
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Fig. 6. Raw superpipeline protocol performance on cluster graphene (left) and infini
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has an rcache method for InfiniBand, and run Mpi benchmarks using its Mad-
Mpi [8] interface. NewMadeleine has a 32KB rendezvous threshold, and uses
plain copy for small messages (no pipeline, no rcache). We compare Mad-Mpi

against OpenMPI-1.4.3 and MVAPICH2-1.6rc2. The results of a MPI ping-pong
bandwidth test on cluster graphene are depicted in Figure 7. The benchmarks
performs 100 round-trips for each message size; we draw separate graphs for the
first and for the best round-trip. We observe the superpipeline gets roughly the
same performance as Mad-Mpi rcache best time, very similar to OpenMPI and
MVAPICH2 best time. However, when we compare the performance of the first

round-trip, we observe that Mad-Mpi rcache, OpenMPI and MVAPICH2 all get
low performance because of registration, whereas Mad-Mpi superpipeline is un-
affected. The superpipeline gets its best performance already at the first send;
the others, relying on rcache, get poor performance on first send.

MPI NAS Parallel Benchmarks. We have run some benchmarks from the
NAS Parallel Benchmarks 3.3.1 on cluster graphene. On tests sp.B.8, lu.B.8



and cg.C.8, Mad-Mpi superpipeline and rcache get the same performance, 3%
slower than OpenMPI and MVAPICH2, explained by the fact that Mad-Mpi

has a slightly higher latency. However, on is.C.8 Mad-Mpi superpipeline is 9%
faster than Mad-Mpi rcache (respectively 3.05 s and 3.32 s), but slightly slower
than MVAPICH2 (3.01 s) and OpenMPI (2.92 s).

It means that superpipeline actually improves performance over rcache on IS

which is cache-unfriendly, but some work has to be done in Mad-Mpi to improve
latency for small message to get overall better performance.

6 Related works

People working on Mpi implementations and other communication libraries have
already studied InfiniBand memory registration and proposed solutions to amor-
tize its cost. Memory registration performance has been analyzed [1] and com-
munication performance modeled [9] without proposing solution to improve per-
formance. Various caching strategies [3, 10, 4] have been proposed, as well as
protocols to overlap rendezvous and registration [11] in case of cache miss; how-
ever, all these solutions exhibits the pitfalls of cache-based strategies.

It has been proposed in OpenMPI [12] to pipeline registration; our model
shows that pipelining copies gives better performance than pipelining registra-
tion. For the InfiniBand device for MPICH2 [2] and the BCopy mode of SDP [13],
it has been investigated to use a copy pipeline with fixed-size chunks. Perfor-
mance was not convincing, because at that time memory bandwidth was not
significantly higher than network bandwidth; our proposal goes further with a
superpipeline rather than a flat pipeline, and our theoretical study shows that
it works because Bcopy > Bnet, which has become the common case nowadays
with contemporary CPUs and their integrated memory controlers.

7 Conclusion and future works

Memory registration has a major impact on performance for InfiniBand net-
works. In this paper, we have proposed performance models for InfiniBand net-
work, copies, and registration, and used them to analyze and optimize the per-
formance of a protocol that uses pipelined copy to bring data into registered
memory. We have proposed an alternative called superpipeline that reduces the
number of gaps, and some optimization mechanisms to reduce the cost of the first
and last chunk copy. We have implemented and benchmarked our superpipeline
protocol, and observed that it gets roughly the same performance as rcache-based
protocol on cache-friendly communication patterns, and better performance on
cache-unfriendly patterns.

As a future work, we will study adaptive strategies to automatically tune
the protocol parameters to the machine it is running, and to monitor rcache

misses/hits to dynamically choose between strategies depending on observed
application behavior.
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