
HAL Id: inria-00586630
https://inria.hal.science/inria-00586630

Submitted on 18 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Middleware-layer Connector Synthesis: Beyond State of
the Art in Middleware Interoperability

Valérie Issarny, Amel Bennaceur, Yérom-David Bromberg

To cite this version:
Valérie Issarny, Amel Bennaceur, Yérom-David Bromberg. Middleware-layer Connector Synthesis:
Beyond State of the Art in Middleware Interoperability. Marco Bernardo and Valerie Issarny. 11th
International School on Formal Methods for the Design of Computer, Communication and Software
Systems: Connectors for Eternal Networked Software Systems, 6659, Springer, pp.217-255, 2011,
Lecture notes in computer science, 978-3-642-21454-7. �10.1007/978-3-642-21455-4�. �inria-00586630�

https://inria.hal.science/inria-00586630
https://hal.archives-ouvertes.fr

Middleware-layer Connector Synthesis:
Beyond State of the Art in Middleware

Interoperability

Valérie Issarny1, Amel Bennaceur1, and Yérom-David Bromberg2

1 INRIA, CRI Paris-Rocquencourt, France
2 LaBRI, University of Bordeaux, France

Abstract. This chapter deals with interoperability among pervasive
networked systems, in particular accounting for the heterogeneity of
protocols from the application down to the middleware layer, which is
mandatory for today’s and even more for tomorrow’s open and highly
heterogeneous networks. The chapter then surveys existing approaches
to middleware interoperability, further providing a formal specification
so as to allow for rigorous characterization and assessment. In general,
existing approaches fail to address interoperability required by today’s
ubiquitous and heterogeneous networking environments where interac-
tion protocols run by networked systems need to be mediated at both
application and middleware layers. To meet such a goal, this chapter in-
troduces the approach that is investigated within the Connect project
and that deals with the dynamic synthesis of emergent connectors that
mediate the interaction protocols executed by the networked systems.

Keywords: Interoperability, Middleware, Pervasive networking, Proto-
col mediation

1 Introduction

As networked systems are becoming increasingly pervasive, they need to compose
dynamically with their ever evolving environment according to functionalities
they provide and/or request. However, such dynamic composition is greatly chal-
lenged by the heterogeneity and autonomy of today’s digital systems, which are
not designed in concert, but are instead independently developed and deployed
within pervasive networking environments. As a result, although networked sys-
tems may possibly match from the standpoint of provided and required function-
alities, actual behavioral matching is unlikely due to inherent design diversity.
Therefore, what is needed for enabling the composition of pervasive networked
systems is emergent connectors [28], which embed a mediation process so as to
adapt the systems’ respective interaction behaviors for the sake of coordination.

The notion of mediator underlying emergent connectors is not new. It has
indeed been investigated since the need for interoperability in distributed sys-
tems was identified [23]. However, this was initially a design-time concern, while

2 Issarny, Bennaceur, and Bromberg

today’s dynamic distributed systems require on-the-fly mediation. On-the-fly
protocol mediation has in particular been studied quite extensively in the con-
text of Web services to deal with either dynamic service composition (e.g., [14])
or substitution (e.g., [12]). Still, as in particular investigated in the companion
chapter on application-layer connector synthesis [26], existing work on runtime
automated mediation concentrates on application-layer protocols, while the het-
erogeneity of open networked systems may concern both the application and
middleware layers.

As surveyed within companion chapter on interoperability in complex dis-
tributed systems [6], middleware interoperability solutions have been developed
since the early days of middleware. While one-to-one bridging was among the
early approaches [40], it evolved into more generic solutions such as Enterprise
Service Bus [13], interoperability platforms [21] and transparent interoperabil-
ity approaches [9, 36]. However, except for the transparent interoperability ap-
proaches, most of these solutions rely upon the design-time choice to develop
applications using the proposed interoperability solution. Thus, they do not al-
low for on-the-fly interoperability between networked applications embedding
different legacy middleware. Middleware interoperability further needs to cope
with the many middleware interaction paradigms that now need to coexist.
This includes accessing the same functionality through distinct paradigms (e.g.,
context-awareness through access to a data-centric sensor network or an RPC-
based context server).

As an illustration, consider the simple, yet challenging scenario of photo
sharing within a public space such as a stadium, which is also investigated from
the standpoint of application-layer connection in [26]. Typically, the target en-
vironment allows for both infrastructure-based and ad hoc peer-to-peer photo
sharing. In the former implementation, a photo sharing service is provided by the
stadium, where only authenticated photographers are able to produce pictures
while any spectator may download and even annotate pictures. The peer-to-peer
implementation allows for photo download, upload and annotation by any spec-
tator, who are then able to directly share pictures using their handhelds. In both
cases, the spectator’s handheld would need to embed the appropriate software
application, which may not be available due to the handheld’s specific platform.
Further, the spectator may not be willing to download yet another photo sharing
application, i.e., the proprietary implementation offered by the stadium, while
one is already available on the handheld. Moreover, while the photo sharing
functionality is present in both versions of the photo sharing application, it is
unlikely that they feature the very same interface and behavior. In particular,
the RPC interaction paradigm suits quite well the infrastructure-based service,
while a distributed shared data space is more appropriate for the peer-to-peer
version. In general, considering the ever-growing base of content-sharing appli-
cations for handhelds, numerous versions of the photo sharing application may
be available on the spectators’ handhelds, thus calling for appropriate interop-
erability solutions that mediate interaction protocols from the application down
to the middleware layer.

Middleware-layer Connector Synthesis 3

This chapter more specifically concentrates on middleware-layer interoper-
ability, i.e., enabling networked systems that functionally match to be able to
coordinate despite running heterogeneous middleware protocols. The next sec-
tion formalizes the role of middleware in the connection of networked systems, in
particular highlighting the inter-play between application- and middleware-layer
protocols. Then, Section 3 focuses on interoperability connectors introduced in
the literature, as surveyed in companion chapter [6]; the behavior of interoper-
ability connectors is formally defined, hence providing a rigorous characteriza-
tion of their respective features. As presented, interoperability connectors allow
overcoming the heterogeneity of middleware protocols as long as the protocols
implement the same coordination paradigm, which is too restrictive regarding
the objective of enabling emergent connectors. Section 4 paves the way for en-
abling emergent connectors, i.e., the on-the-fly synthesis of connectors that me-
diate interaction protocols from the application down to the middleware layer,
which builds upon the theory of mediators presented in companion chapter [26].
Finally, Section 5 concludes with perspective for future work towards effecting
emergent middleware.

2 Middleware-based Connectors

In the context of distributed systems, a connector abstracts a complex interac-
tion behavior that is facilitated by middleware which provides services to realize
this interaction. In particular, middleware overcomes the heterogeneity of the
distributed infrastructure by establishing a software layer that homogenizes the
infrastructure’s diversities using a well-defined and structured distributed pro-
gramming model [27]. In particular, middleware induces an interaction paradigm
for enabling distributed networked systems to coordinate [38].

In the following, we introduce middleware-based connectors using state-of-
the-art connector classification [34, 50] (Section 2.1) and define their specification
using formal notation(Section 2.2). Then, we describe the mismatches preventing
connection among components and introduce the needed mediation to enforce
interoperability among them.

2.1 A Classification of Middleware-based Connectors

Based upon the classification of connectors introduced in [34, 50], services pro-
vided by middleware are depicted in Figure 1. The communication and coordi-
nation services support the transfer of data and control among components and
can be realized by different connector types, each of which defining an interaction
paradigm such as procedure call, event, message-based, or data access connectors.
The adaptor connector type provides a conversion service to support interac-
tion among heterogeneous components while services that facilitate interaction
among components are achieved using the distributor and arbitrator connec-
tor types. Distributor connectors perform discovery through the identification
of interaction paths and subsequent routing of communication and coordination

4 Issarny, Bennaceur, and Bromberg

Middleware

Services

Data Access

Message-based

Arbitrator

Distributor

Adaptator

In
te

ra
ct

io
n

pa
ra

di
gm

s
D

is
co

ve
ry

N
FP

Application

Communication

Facilitation

Conversion

Coordination

Procedure Call

Event

Connector types

Fig. 1. Middleware-based connector classification

information among components along these paths. Non-functional properties
(NFP) are managed by arbitrator connectors that streamline system operations,
resolve any conflict and redirect the flow of control.

Each connector type is associated with different dimensions (and subdimen-
sions) representing its architectural details. For example, a procedure call con-
nector defines the Parameters dimension that is subdivided into data transfer,
semantics, return value, and invocation record subdimensions. The procedure
call connector type is also associated to other dimensions such as Entry point
associated to two subdimensions, single or multiple, Invocation defining the im-
plicit and explicit subdimensions, Synchronicity, Cardinality, and Accessibility.
The values associated to the various dimensions and subdimensions define a
connector implementation, that is, a specific middleware. For example, SOAP3

(Simple Object Access Protocol), CORBA4 (Common Object Request Broker
Architecture), and RMI5 (Remote Method Invocation) are specific middleware
defining implementations of the procedure call connector type.

2.2 Formalizing Middleware-based Connectors

In order to precisely characterize the role of middleware in the connection of
networked systems, this section formalizes middleware-based connectors using
FSP [33], as FSP has proven to be a convenient formalism for specifying con-
nectors [47]. In particular, using FSP allows us to exploit the LTSA tool [33] to
automate reasoning about the behavior of connectors and connected systems.

3 http://www.w3.org/TR/soap/
4 http://www.omg.org/technology/documents/corba spec catalog.htm
5 http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html

Middleware-layer Connector Synthesis 5

Definitions

END Predefined process, denotes the state in which a process suc-
cessfully terminates

set S Defines a set of action labels

[i : S] Binds the variable i to a value from S

Primitive Processes (P)

a→ P Action prefix

a→ P |b→ P Choice

P ;Q Sequential composition

P (X =′ a) Parameterized process: P is described using parameter X
and modeled for a particular parameter value, P (a1)

P/{new 1/old 1, ..., new n/old n} Relabeling

P\{a1, a2, ..., an} Hiding

P + {a1, a2, ..., an} Alphabet extension

Composite Processes (‖P)

P‖Q Parallel composition

forall [i : 1..n] P (i) Replicator construct: equivalent to the parallel composition
(P (1)‖...‖P (n)).

a : P Process labeling

Table 1. FSP syntax overview

FSP notations and semantics. Table 1 provides an overview of the FSP oper-
ators, while the interested reader is referred to [33] for further detail. Briefly
stated, FSP processes describe actions (events) that occur in sequence, and
choices between event sequences. Each process has an alphabet of the events
that it is aware of (and either engages in or refuses to engage in). There are
two types of processes: primitive processes and composite processes. Primitive
processes are constructed through action prefix, choice, and sequential composi-
tion. Composite processes are constructed using parallel composition or process
relabeling. When composed in parallel, processes synchronize on shared events:
if processes P and Q are composed in parallel as P ||Q, events that are in the
alphabet of only one of the two processes can occur independently of the other
process, but an event that is in the alphabets of both processes cannot occur un-
til the two of them are willing to engage in it. The replicator forall is a convenient
syntactic construct used to specify parallel composition over a set of processes.
Processes can optionally be parameterized and have re-labeling, hiding or exten-
sion over their alphabet. A composite process is distinguished from a primitive
process by prefixing its definition with ‖.

A formalization of connectors. According to [1], a connector is defined by a set
of roles and a glue where:

– roles (See Figure 2, ¶) specify the expected local behavior of each of the
interacting parties.

6 Issarny, Bennaceur, and Bromberg

Connector roles

Middleware

Application

Component port

Middleware

Application

12
Component port

2

Connector glue
3

Fig. 2. Components & Connector

– glue (See Figure 2, ¸) specifies how the behaviors of these parties are coor-
dinated.

In addition, the interaction protocols of components are specified by ports (See
Figure 2, ·).

Then according to [47], roles, glues and ports are specified as FSP processes,
which allows assessing architectural matching and thus interoperability. Specifi-
cally, a component can be attached to a connector only if its port is behaviorally
compatible with the connector role it is bound to. Allen and Garlan [1] define
behavioral compatibility between a component port and a connector role based
on the notion of refinement. Informally, a component port is behaviorally com-
patible with a connector role if the process specifying the behavior of the former
refines the process characterizing the latter. In other words, it should be possible
to substitute the role process by the port process.

In our case, we are further interested in characterizing interaction protocols
at both application and middleware layers since both of them are sources of het-
erogeneity. We then define the behavior of a connector as a hierarchical protocol
that specifies the behavior of the application-layer interaction protocol in terms
of middleware-specific protocols. Building on the work of [47], the behavior of a
middleware-layer connector is specified as a parallel FSP process composing: (i)
one process for each role of the connector, and (ii) one process for the glue that
describes how all roles are bound together. The application-specific behavior is
further specified as a process over role processes of the underlying middleware-
layer connector.

Example. As an illustration, we have the following FSP-based specification of a
SOAP-based connector:

1 Role ClientSOAP = SOAP -RPCCall→ SOAP -RPCReceiveReply →ClientSOAP
2 Role ServerSOAP = SOAP -RPCReceiveCall→ SOAP -RPCReply → ServerSOAP
3 GlueSOAP = SOAP -RPCCall→ SOAP -RPCReceiveCall→GlueSOAP
4 | SOAP -RPCReply → SOAP -RPCReceiveReply →GlueSOAP
5 ‖ConnectorSOAP = ClientSOAP || GlueSOAP || ServerSOAP

According to the specification, ClientSOAP (Line 1) initiates a request using
SOAP -RPCCall, and gets a response through SOAP -RPCReceiveReply. When

Middleware-layer Connector Synthesis 7

ServerSOAP (Line 2) gets a request SOAP -RPCReceiveCall, it initiates a re-
sponse SOAP -RPCReply. The GlueSOAP coordinates the interaction of the two
roles (Lines 3 and 4): a SOAP -RPCCall from the ClientSOAP is followed by a
SOAP -RPCReceiveCall to the ServerSOAP , and a SOAP -RPCReply from the
ServerSOAP is followed by a SOAP -RPCReceiveReply to the ClientSOAP .

Then, different application-layer protocols may be specified using the pro-
vided middleware connector. For instance, consider the Photo Sharing example
discussed in the introduction, Figure 3 gives the FSP specification of the RPC-
SOAP implementation of infrastructure-based photo sharing. First, we define
the SOAP actions that can be performed by the networked systems (Line 1).
The behavior of the photo sharing consumer (Lines 3 to 5), producer (Lines 6
to 7), and server (Lines 8 to 12) are specified using this provided set of actions.
The photo sharing producer and consumer invoke actions using the ClientSOAP
process (Lines 14 to 15) while the photo sharing server provides actions using
the ServerSOAP process(Lines 16 to 17). The GlueSOAP ensures the coordination
among all the actions (Lines 18 to 20).

1 //Infrastructure-bade application specification
2 set SOAP PhotoSharing Actions = {uploadPhoto, searchPhoto, downloadPhoto, downloadComment, commentPhoto}
3 PhotoSharingConsumer = (req.searchPhoto→P1),
4 P1 = (req.downloadPhoto→P1|req.commentPhoto→P1
5 |req.downloadComment→P1 |terminate→END).
6 PhotoSharingProducer = (req.uploadPhoto→PhotoSharingProducer
7 |terminate→END).
8 PhotoSharingServer = (prov.uploadPhoto→PhotoSharingServer
9 |prov.searchPhoto→PhotoSharingServer
10 |prov.downloadPhoto→PhotoSharingServer
11 |prov.commentPhoto→PhotoSharingServer
12 |prov.downloadComment→PhotoSharingServer|terminate→END).
13 //SOAP middleware Specification
14 ClientSOAP (X =′ op) = (req.[X] →P1|terminate→END),
15 P1 = (SOAP -RPCCall[X] → SOAP -RPCReceiveReply[X] →ClientSOAP).
16 ServerSOAP (X =′ op) = (prov.[X] →P2 |terminate→END),
17 P2 = (SOAP -RPCReceiveCall[X] → SOAP -RPCReply[X] →ServerSOAP).
18 GlueSOAP (X =′ op) = (SOAP -RPCCall[X] →P0 |terminate→END),
19 P0 = (SOAP -RPCReceiveCall[X] → SOAP -RPCReply[X]
20 → SOAP -RPCReceiveReply[X] →GlueSOAP).
21 //System specification
22 ‖SOAP PhotoSharing = (PhotoSharingProducer
23 ‖PhotoSharingConsumer
24 ‖PhotoSharingServer
25 ‖(forall [op:SOAP PhotoSharing Actions] ServerSOAP (op))
26 ‖(forall [op:SOAP PhotoSharing Actions] ClientSOAP (op))
27 ‖(forall [op:SOAP PhotoSharing Actions] GlueSOAP (op))).

Fig. 3. Infrastructure-based photo sharing

2.3 Connection Mismatches and Related Mediation

Connection mismatches result from different assumptions that components make
about connection. Blair et al. [6] define several heterogeneity dimensions gener-
ating mismatches (see Figure 4):

8 Issarny, Bennaceur, and Bromberg

Mismatches Mismatches

DataData

BehavioralBehavioral

Application-levelApplication-level

Middleware-levelMiddleware-level

Business process\logicBusiness process\logic

Operation granularityOperation granularity

Coordination modelCoordination model

Coordination model instantiationCoordination model instantiation

SyntacticSyntactic

SemanticSemantic

Fig. 4. Classifying mismatches

– Data heterogeneity: Networked systems associate different representations
(syntax) and meanings (semantics) to their data, which may results in data
inconsistencies. Middleware coupled with ontologies play a valuable role in
solving both the syntactic and semantic mismatches.

– Behavioral middleware-level heterogeneity: While middleware ensures inter-
operability across languages and network platforms, it only does so for sys-
tems using the same middleware. Indeed, a middleware implementation in-
volves a style of interaction by specifying a coordination model and the
associated protocol and data format. As a result, systems using different
middleware are not able to interoperate.

– Behavioral application-level heterogeneity: Different systems may have in-
compatible business-process logic and disparate interface signatures (e.g.,
see [26]).

A further dimension of heterogeneity is related to the handling of non-functional
properties, which we do not address in this chapter.

In general, networked systems may be connected only in the absence of all
of the above heterogeneity dimensions, i.e., networked systems should be be-
haviorally compatible from application down to middleware layer, and further
exchange semantically and syntactically matching data.

However, with networked systems getting increasingly pervasive, one would
like to be able to connect networked systems that semantically match, despite
heterogeneity in the above dimensions. By semantic matching [41], we mean that
networked systems share a complementary high level goal towards which they
need to coordinate although they may possibly run heterogeneous interaction
protocols from the application down to the middleware layer.

Still considering the photo sharing example, both the infrastructure-based
(see Figure 5A) and the peer-to-peer-based (see Figure 5B) versions of the photo
sharing may be implemented over SOAP. Even though, the two systems seman-
tically match and behaviorally match at the middleware-layer, they are not able
to interact due to behavioral mismatches at the application layer.

Similarly, the infrastructure-based version of photo sharing may be imple-
mented using two different middleware, such as SOAP (see Figure 6A) and
RMI(see Figure 6B). In this case, middleware-layer mismatches prevent the two

Middleware-layer Connector Synthesis 9

Photo Sharing
Consumer

B

A

SOAP Middleware

Photo Sharing
Producer

SOAP Middleware

Photo Sharing
Peer

Photo Sharing
Peer

SOAP Middleware SOAP Middleware

Mismatch

Fig. 5. Application mismatches

networked systems from interacting despite semantic matching and behavioral
matching at the application-layer.

Photo Sharing
Consumer

B

A

SOAP Middleware

Photo Sharing
Producer

SOAP Middleware

RMI Middleware RMI Middleware

Photo Sharing
Producer

Photo Sharing
Consumer

Mismatch

Fig. 6. Middleware mismatches

Under semantic matching of two networked systems, behavioral matchmaking
is achieved through the generation of mediators that enforce the behavioral
compatibility of the networked systems (see Figure 7). The resulting system is
called connected system.

Soap
Middleware

Service 2

Soap
Middleware

Client 1
Mediator

Fig. 7. Connected system

Since mismatches take place at different inter-related layers, mediation be-
comes a cross-cutting concern that has to be achieved in conjunction at the dif-
ferent system layers, from application down to middleware down to network (see
Figure 8). At each layer, many facets (data, interface, and behavior) of hetero-
geneity should be dealt with. There is a number of existing mediation solutions,

10 Issarny, Bennaceur, and Bromberg

each of which solves mismatches related either to applications or to middleware.
Indeed, solutions addressing application heterogeneity assume the same middle-
ware whereas solutions achieving middleware interoperability consider the same
application atop of it. However, all the dimensions of heterogeneity should be
simultaneously addressed in order to guarantee effective interoperability among
heterogeneous systems.

Application

Middleware

Network

DataData InterfaceInterface BehaviorBehavior

Interoperability facets

Interoperability
layers

Data/Semantic
Mediation

Listener/Actuator Synthesis

Process/Behavioral
Mediation

Fig. 8. Mediation

In this chapter, we more specifically concentrate on middleware-layer proto-
col mediation and its relation with application-layer mediation. As a first step,
the next section reviews state-of-the-art solutions to middleware interoperabil-
ity that is in particular surveyed in [6]. We qualify such solutions as interop-
erability connectors. However, these solutions primarily deal with middleware-
level heterogeneity, further assuming connection between components relying on
the same interaction paradigm. Section 4 then introduces the solution investi-
gated within the Connect project that aims at overcoming both application-
and middleware-level heterogeneity, including heterogeneity in the interaction
paradigms.

3 Interoperability Connectors

State-of-the-art solutions to interoperability between heterogeneous middleware
primarily concentrate on middleware implementing the same interaction para-
digm and subdivide into the following categories: software bridge, interoperability
platform and transparent interoperability [6]. We review each approach in turn,
providing their FSP-based semantics so as to precisely characterize their re-
spective features and further allow for thorough assessment and comparison. In
addition, we point out exploitation of the proposed interoperability connectors
at the application layer.

Middleware-layer Connector Synthesis 11

3.1 Software Bridges

Bridging assumes a priori knowledge of both applications and middleware that
have to be made interoperable without any intervention in their code. Particu-
larly, bridging provides a mapping between various interaction protocols. Such
a mapping can be either 1 → 1, which is direct bridging ; or n → 1 → m, which
is indirect bridging.

Direct bridging. The principle of direct bridging is to transform one of the
connector roles according the incompatible connector role, as illustrated in Fig-
ure 9.

C2C1
R12 R22

connector 2
R21R11

Bridge

connector 1
T

Fig. 9. Direct bridge

Formally, direct bridging is performed as follows (see Figure 10):

1. The glue of each connector is first tagged in order to avoid unwanted event
synchronization (tag1 :Glue1 and tag2 :Glue2, Line 11),

2. A set of predefined transformations, T (Line 7), is applied to the connectors
in order to adapt their respective behaviors,

3. The transformations are chained with the tagged glues through the Bridge
(Line 5) process.

According to the above, the direct bridge mediator specification is defined as:

‖Direct Bridge Mediator = (Bridge||T).

The developer must thus ensure the correctness of T, in particular ensuring that
the bridging actually performs the required mediation without introducing any
error. Moreover, a direct bridge must be developed separately for every pair of
protocols between which interaction is required. Hence, ensuring interoperability
between each pair of n components requires developing n(n− 1) mediators. The
diversity of protocols that are used in today’s networked systems implies that
this is a substantial development task.

Practically, middleware direct bridges, such as OrbixCOMet6 and SOAP2-
CORBA7, ensure interoperability between two fixed middleware implementa-
tions (DCOM-CORBA and SOAP-CORBA respectively). Similarly, application
software bridges may be introduced to define bridging between application-
specific protocols (i.e., overcoming application- and middleware-layer protocols

6 http://www.iona.com/support/whitepapers/ocomet-wp.pdf
7 http://soap2corba.sourceforge.net/

12 Issarny, Bennaceur, and Bromberg

//Specification of Connector1 & Connector2
1 Role R1i,i∈[1··2] = Specification of Role R1 of Connectori
2 Role R2i,i∈[1··2] = Specification of Role R2 of Connectori
3 Gluei,i∈[1··2] = Specification of the glue of Connectori
4 set Ii,i∈[1··2] = Set of events initiated from Role R1i and R2i

5 Bridge = tag1.[e1 :I1] → tag2.[e1] →Bridge|tag2.[e2 :I2] → tag1.[e2] →Bridge

6 //Specification of the adaptation process
7 T = Specification of the required transformations to bridge Connector1 to Connector2

8 //Specification of the direct bridge connector
9 ‖C-DBridge = R11‖tag1 :Glue1‖Bridge ‖T‖tag2 :Glue2‖R22

Fig. 10. Direct bridging specification

heterogeneity). However, implementing a bridge between two networked applica-
tions becomes very complex due to the domain-specific and technical knowledge
required to realize the mediation.

Indirect bridging. Indirect bridging reduces the development effort associ-
ated with software bridges by introducing a common fixed intermediary proto-
col. This intermediary protocol is represented as a dedicated connector called
Connectorbus (see Figure 11). Then, interoperability is achieved in two steps:
(i) the given native middleware protocol taken among n middleware is translated
into a common intermediary protocol, (ii) the common intermediary protocol is
then translated into the other given native middleware protocol taken among m
middleware.

R11 R21

R1k R2k

connector' 1

R1n R2n R1m R2m
C2

R1i R2i

C1
R21R11

connectorbus

Bridge2Bridge1

R1bus R2bus

connector' k

connector' mconnector m

connector i

connector 1 ToT1

ToTi

ToTn

ToT '1

ToT 'i

ToT 'm

Fig. 11. Indirect bridge

Formally, indirect bridging performs translations back and forth using direct
bridges in two steps (see Figure 12):

1. Connectori to Connectorbus direct bridging through the use of processes
ToTi‖Bridgei (Lines 19 and 26) (i ∈ [1··n]),

Middleware-layer Connector Synthesis 13

2. Connectorbus to Connector′k direct bridging through the use of processes
ToT ′k‖Bridge′k (lines 22 and 29) (k ∈ [1··m]).

The indirect bridge mediator is then specified as:

‖Indirect Bridge Mediator = (T1‖Bridge1‖Bridge2‖T2).

//Connectorbus specification
1 Role R1bus = Specification of Role R1 of Connectorbus
2 Role R2bus = Specification of Role R2 of Connectorbus
3 Gluebus = Specification that describes interactions between Role R1bus and Role R2bus

4 //Connectors specification
5 Role R1 = |ni=1(a.gluei →R1i),
6 R1i,i∈[1··n] = R1i initial specification as given by Connectori|reset→ R1
7 Role R2 = |mk=1(b.glue′k →R2k),
8 R2k,k∈[1··m] = R2k initial specification as given by Connector′k|reset→ R2
9 Gluei,i∈[1··n] = Specification that describes interactions between
10 Roles R1i and R2i

11 Glue′k,k∈[1··m] = Specification that describes interactions between
12 Role R′1k and Role R′2k

13 //Set of events initiated or observed
14 set I1i,i∈[1··n] = Set of events initiated from Role R1i

15 set O1i,i∈[1··n] = Set of events observed from Role R1i

16 set I2k,k∈[1··m] = Set of events initiated from Role R′2k

17 set O2k,k∈[1··m] = Set of events observed from Role R′2k

18 //Specification of the adaptation processes
19 T1 = |ni=1(a.gluei → ToTi),
20 ToTi,i∈[1··n] = Specification of the required transformations to bridge Connectori to Connectorbus
21 | a.reset→T1

22 T2 = |mk=1(b.glue′k → ToT′k),
23 ToT′k,k∈[1··m] = Specification of the required transformations to bridgeConnectorbus to Connector′k
24 | b.reset→T2

25 //Specification of the bridging processes
26 Bridge1 = |ni=1(a.gluei → Bridgei),
27 Bridgei,i∈[1··n] = [e : I1i] → a.tagi.[e] → Bridgei|a.tagi.[e : O1i] → [e] → Bridgei
28 | a.reset→Bridge1
29 Bridge2 = |mk=1(b.glue′k → Bridge′k),
30 Bridge′k,k∈[1··m] = [e : I2k] → b.tagk.[e] → Bridge′k|b.tagi.[e : O2k] → [e] → Bridge′k
31 | b.reset→ Bridge2

32 //Specification of the indirect bridge connector
33 ‖C-IBridge = R1‖T1‖ni=1a.tagi :Gluei‖Bridge1‖Gluebus‖Bridge2‖mk=1b.tagk :Glue′k‖T2‖R2

Fig. 12. Indirect bridging specification

Practically, there exist various implementations of indirect bridges such as
Enterprise Service Buses (e.g., ARTIX8) and MUSDAC [43]. Especially, Enter-
prise Service Buses (ESBs) have received a lot of attention. An ESB [35] is an

8 http://web.progress.com/en/sonic/artix-index.html

14 Issarny, Bennaceur, and Bromberg

open standards, message-based, distributed integration infrastructure that pro-
vides routing, invocation and mediation services to facilitate the interactions of
disparate distributed applications and services.

Compared to direct bridging that requires n ×m direct bridges to allow n
components to interact with m, indirect bridging reduces the development effort
since n + m bridges have to be manually developed. Nevertheless, it limits the
expressiveness of protocols, as some aspects of the relevant protocols may not
be compatible with the chosen intermediary protocol.

3.2 Interoperability Platform

To overcome the static nature of software bridging, new approaches that dy-
namically select the best middleware bridge at a given time and place have
emerged. Such solutions, called thereafter interoperability platforms, enable net-
worked systems to switch their interaction protocol on-the-fly according to their
environment. The principle is to provide a custom interface that abstracts the
different interaction protocols used in the environment (see Figure 13).

connector 1
R11 R21

connector 2
R12 R22

connector i
R1i R2i

connector N
R1N R2N

Bridge

SwitchC1
C2

Rinterface

ToT1

ToT2

ToTi

ToTn

Fig. 13. Interoperability platform

Formally, interoperability is ensured in the following steps (see Figure 14):

1. The common interface, that has to be used by any component to interoperate
with its environment is formally specified by a role Rinterface (Line 2),

2. The Switch process (Line 12) selects the appropriate connector Connectori
among n according to the requirements of the environment,

3. The translation between Rinterface and Connectori is achieved in a way
similar to direct bridging (Lines 14 to 21).

This leads to the following specification of the interoperability mediator :

‖Interoperability Mediator = (Switch‖T‖Bridge).

Middleware-layer Connector Synthesis 15

1 //Proprietary interface
2 Role Rinterface = Specification of the bridge interface
3 Role R2 = |ni=1(gluei → R2i),
4 R2i,i∈[1··n] = Initial specification of the Role R2 of Connectori|reset→ R2
5 Gluei,i∈[1··n] = Specification of the glue of Connectori
6 //Set of events initiated or observed
7 set I2i,i∈[1··n] = Set of events initiated from Role R2i

8 set O2i,i∈[1··n] = Set of events observed from Role R2i

9 set Iinterface = Set of events initiated from Role Rinterface

10 set Ointerface = Set of events observed from Role Rinterface

11 //Switch process
12 Switch = (election→ reset→ Switch |ni=1election→ gluei → Switch)\{election}

13 //Specification of the adaptation process
14 T = |ni=1(gluei → ToTi),
15 ToTi,i∈[1··n] = Specification of the required transformations to bridge Rinterface to Connectori
16 | reset→ T

17 //Specification of the bridging process
18 Bridge = |ni=1(gluei → Bridgei),
19 Bridgei,i∈[1··n] = [e : Rinterface] → tagi.[e] → Bridgei|tagi.[e : Ointerface] → [e] → Bridgei
20 | [e : I2i] → tagi.[e] → Bridgei|tagi.[e : O2i] → [e] → Bridgei
21 | reset→Bridge

22 //Specification of the interoperability platform connector
23 ‖C-InteropPlatforms = Rinterface‖Switch‖T‖Bridge‖ni=1tagi :Gluei‖R2

Fig. 14. Interoperability platform specification

Practically, middleware-level interoperability platforms, such as UIC [44] and
ReMMoC [21], allow the development of applications independently from the
underlying protocol. They select the most appropriate communication protocol
according to the context. Many applications, however, have not been developed
using such middleware interface and cannot be modified because their source
codes are not available. From the perspective of application-layer protocols, the
common interface is in general a domain-specific standard that several compo-
nents and services comply with. However, compliance to the same interface does
not necessarily imply behavioral compatibility and mediators have to be used in
order to guarantee behavioral compatibility as well [15].

3.3 Transparent Interoperability

Unlike indirect bridging, transparent interoperability solutions do not rely on
a fixed common protocol anymore but rather synthesize the common protocol
dynamically based on the interaction behavior of communicating parties. We are
more specifically interested in dynamic protocol translation [7]. This approach
is based on concepts taken from the theory of protocol projection [30]. The
theory enables mapping incompatible protocols to an image protocol (see Fig-
ure 15), which has proven effective to reason about conversions and semantic
equivalence among heterogeneous protocols [7]. In particular, an image protocol

16 Issarny, Bennaceur, and Bromberg

abstracts incompatibilities among protocols to exclusively consider their sim-
ilarities. Further, by generating an image protocol on-the-fly, it is possible to
provide a dynamic semantic correspondence among heterogeneous middleware
protocols.

Switch'

R11 R21

R1k R2k

connector' 1

R1n R2n R1m R2m
C2

R1i R2i

C1
R21R11

connectorimageSwitch

Bridge2Bridge1

R1image R2image

connector' k

connector' mconnector m

connector i

connector 1 ToMap1

ToMapi

ToMapn

ToMap '1

ToMap 'i

ToMap 'm

W1 W2

Fig. 15. Transparent interoperability

Formally, a projection function f is used to synthesize an image protocol, that is
the greatest common denominator between a pair of protocols (see Figure 16).
Interoperability is then performed in the following steps:

1. The glue of all the connectors are tagged in order to avoid unwanted event
synchronization,

2. One connector is dynamically chosen among n (m) connectors based on
the context/environment through the Switch (Switch′) process: Connectori
(Connector′k) (Lines 19 and 20),

3. W1 (W2) (Lines 22 to 25) are then used to synchronize tagged glues with
their respective roles depending on the selected connector,

4. The strength of the approach lies in M1 and M2 processes (Lines 26 to 32)
that are used to define the semantics of the events. To do so, the projection
function (f) is used to establish the semantic equivalence between events:
f(e1) = f(e2) iff e1 and e2 have the same semantics,

5. Bridge1 and Bridge2 (Lines 34 to 41) tag/untag the projected events in order
to allow M1 and M2 to synchronize.

This leads to the following specification of the transparent mediator :

‖Transparent Mediator = (Switch ‖W 1‖M 1‖Bridge1‖Bridge2‖M 2‖ W2‖Switch′).

Practically, the INDISS [9] and NEMESYS [7] middleware implement the dy-
namic protocol translation approach for service discovery and interaction proto-
col (assuming the same application atop) respectively. uMiddle [36], OSDA [31],
SeDiM [19] are other middleware-level implementations of the transparent inter-
operability approach. Regarding the application layer, there is a substantial piece
of work on transparent interoperability at the application layer assuming the use
of Semantic Web technologies. OWL-S [51] exploit Semantic Web ontologies to

Middleware-layer Connector Synthesis 17

1 //Connectors specification
2 Role R1 = |ni=1(a.gluei → R1i),
3 R1i,i∈[1··n] = R1i Initial specification as given by Connectori|reset→ R1
4 Role R2 = |nk=1(b.gluek → R2k),
5 R2k,k∈[1··n] = R2k Initial specification as given by Connector′k|reset→ R2
6 Gluei,i∈[1··n] = Specification that describes interactions between Role R1i and Role R2i

7 Glue′k,k∈[1··m] = specification that describes interactions between Role R′1k and Role R′2k

8 //Definition of set of events
9 set I1i,i∈[1··n] = Set of events initiated from Role R1i

10 set O1i,i∈[1··n] = Set of events observed from Role R1i

11 set I2k,k∈[1··m] = Set of events initiated from Role R′2k

12 set O2k,k∈[1··m] = Set of events observed from Role R′2k

13 set Ei,i∈[1··n] = αR1i ∩ αGluei
14 set Ek,k∈[1··m] = αR2k ∩ αGlue′k
15 set

∑
E1n

= ∪n
i=1E1i

16 set
∑

E2m
= ∪m

k=1E2k

17 set
∑

O1n
= ∪n

i=1O1i

18 set
∑

O2m
= ∪m

k=1O2k

19 Switch = (a.election→ a.reset→ Switch|ni=1a.election→ a.gluei → Switch)\{a.election}
20 Switch′ = (b.election→ b.reset→ Switch′|mk=1b.election→ b.glue′k → Switch′)\{b.election}

21 //Specification of processes for the image protocol generation
22 W1 = |ni=1(a.gluei → ToGluei),
23 ToGluei,i∈[1··n] = [e : I1i] → a.tagi.[e] → ToGluei |a.tagi.[e : O1i] → [e] → ToGluei |a.reset→W1

24 W2 = |nk=1(b.glue′k → ToGlue′k),
25 ToGlue′k,k∈[1··m] = [e : I2k] → b.tagk.[e] → ToGlue′k |b.tagk.[e : O2k] → [e] → ToGlue′k |b.reset→W2

26 M1 = |ni=1(a.gluei → ToMapi),
27 ToMapi,i∈[1··n] = a.tagi.[e : I1i] → a.tagi.f(e) → ToMapi
28 | a.tagi.f(e :

∑
O1n

) → a.tagi.[e : O1i] → ToMapi|a.reset→M1

29 M2 = |nk=1(b.glue′k → ToMap′k),
30 ToMap′k,k∈[1··m] = b.tagk.[e : I2k] → b.tagk.f(e) → ToMap′k
31 | b.tagk.f(e :

∑
O2m

) → b.tagk.[e : O2k] → ToMap′k
32 | b.reset→M2

33 //Specification of the bridging processes
34 Bridge1 = |ni=1(a.gluei → ToBridgei),

35 ToBridgei,i∈[1··n] = a.tagi.f
(
e2 :

∑
E2k

)
→ f(e2) → ToBridgei

36 | f(e1 :
∑

E1n
) → a.tagi.f(e1) → ToBridgei

37 | a.reset→Bridge1
38 Bridge2 = |mk=1(b.glue′k → ToBridge′k),

39 ToBridge′k,k∈[1··m] = b.tagk.f
(
e1 :

∑
E1n

)
→ f(e1) → ToBridge′k

40 | f(e2 :
∑

E2m
) → b.tagk.f(e2) → ToBridge′k

41 | b.reset→Bridge2

42 //Specification of the transparent interoperability connector
43 ‖C-Transparent Interop = R1‖ Switch ‖ni=1a.tagi : Gluei/{f(r : αGluei)/[r]}‖ W 1‖ M 1‖Bridge1‖Bridge2
44 ‖M 2‖ W 2‖mk=1b.tagk : Gluek/{f(r : αGluek)/[r]}‖Switch ′‖R2

Fig. 16. Transparent interoperability specification

18 Issarny, Bennaceur, and Bromberg

enrich descriptions of services in order to enhance service discovery and com-
position using semantic matching. Web Service Modeling Ontology (WSMO)9

introduces mediators as the core of a conceptual model treating heterogeneity
of Semantic Web Services. In particular, it addresses both data and behavioral
mediation.

As briefly surveyed in this section, tremendous work exists on the develop-
ment of concrete interoperability solutions to overcome protocol heterogeneity
and in particular middleware protocol heterogeneity. However, these solutions
focus on a single protocol layer, while the connection of pervasive networked
systems requires dealing with protocol heterogeneity at both application and
middleware layers. In addition, middleware heterogeneity is in general overcome
for middleware protocols implementing the same interaction paradigms while
the increasing heterogeneity of the networked devices now calls for connecting
systems relying on different interaction paradigms.

4 Emergent Connector Synthesis

Towards overcoming the increasing heterogeneity of today’s pervasive networking
environments, this section introduces a model-based approach to the synthesis
of emergent connectors, which builds upon the theory of mediators introduced
for application-layer protocols in [46] and further surveyed in companion chapter
[26]. An emergent connector allows two networked systems that complementary
provide/require the same functionality to coordinate although they possibly ex-
ecute different protocols. This then requires adequate modeling of networked
systems to enable reasoning about their semantic and behavioral compatibili-
ty/matching (Section 4.1), which in particular relies on the definition of ontolo-
gies conceptualizing middleware and application functions (Section 4.2). Briefly
stated, two networked systems are considered to be semantically matching if they
respectively require and provide a matching high-level functionality, which is
characterized by ontology concepts. Then, assessing whether the two networked
systems are behaviorally compatible relies on analyzing whether the protocols
associated with the realization of the given functionality may be adapted so
that they can successfully coordinate. The resulting adaptation then defines the
mediator to be implemented by the emergent connector. As illustrated by the
rich literature on protocol conversion (e.g., [11]), different compatibility rela-
tions may be defined. They primarily differ according to their complexity and
conversely proportional flexibility. In order to lower the complexity of emer-
gent connectors, we perform protocol mediation according to known mapping
between the networked systems’ actions, which is inferred from their ontology-
based semantics. In addition, protocol mediation is composed according to the
basic mediation patterns known from the literature (Section 4.3), while concrete
connectors handle actual middleware message translation (Section 4.4). Finally,
our work takes inspiration from extensive literature in the area of protocol medi-

9 http://www.wsmo.org/

Middleware-layer Connector Synthesis 19

ation and middleware interoperability; our contribution primarily lies in dealing
with mediation from application down to the middleware layer (Section 4.5).

4.1 Modeling Networked Systems towards On-the-fly Connection

A basic assumption of on-the-fly connection of networked systems is that sys-
tems advertise their presence in the network(s) they join. This is now common
in pervasive networks and supported by a number of resource discovery pro-
tocols [53]. Still, a crucial question is which description of resources should be
advertised, which ranges from simple (attribute, value) pairs as with SLP10 to
advanced ontology-based interface specification [3].

In our work, resource description shall enable networked systems to compose
according to the high-level functionalities they provide and/or require in the
network, despite heterogeneity in the protocols associated with the implemen-
tation of the functionality. In other words, networked systems must advertise
the high-level functionalities they provide and/or consume to be able to meet
according to the matching of their respective functionalities. Building upon Se-
mantic Web Services, we call such functionalities capabilities and we say that
networked systems semantically match when a networked system requires a ca-
pability that matches a capability provided by the other. Then, in accordance
with the definition of connectors discussed in Section 2, connection between se-
mantically matching networked systems requires precise characterization of the
protocols associated with the realization of capabilities, where protocols are de-
fined as processes over the networked system’s observable actions. Observable
actions are typically specified as part of the system’s interface signature while
the modeling of protocols relies on some concurrent language and may be ad-
vertised by the system or be possibly learned. Last but not least, the semantics
of observable actions need to be rigorously defined in order to assign the same
meaning to actions in any environment, for which we exploit ontologies.

The following paragraphs further define the notions of capability, interface
signature, and ccapability protocol.

Capability. Using the terminology of the Semantic Web Services area11, a capa-
bility denotes a high-level functionality provided or required from the networked
environment. Concretely, a capability is specified as a tuple:

Capability =<Type, C, I, O >

where:

– Type stands for required (noted Req), provided (noted Prov) or required
and provided (noted Req Prov) capability. A provided capability denotes a
capability offered in the network while a required one is to be consumed. A
required and provided capability is then both consumed and offered by the
networked system, as common in peer-to-peer systems.

10 http://www.openslp.org/
11 http://www.ai.sri.com/daml/services/owl-s/

20 Issarny, Bennaceur, and Bromberg

– C gives the semantics of the capability in terms of an ontology concept;
– I (resp. O) specifies the set of inputs (resp. outputs) of the capability, which

is defined as a tuple < i1, ..., in > (resp. < o1, ..., om >) with il=[1..n] (resp.
ol=[1..m]) being an ontology concept.

and where the ontology concepts are defined by a domain-specific ontology re-
ferred to in the networked system’s interface. As an illustration, the capability
of the photo sharing consumer application is defined as:

<Req, Photo-Sharing Consumer, Comment, Photo>

where the meaning of concepts is direct from the given names (see further Sec-
tion 4.2 for the definition of the ontology).

Interface signature. The interface signature of a networked system specifies
the set of observable actions that the system executes to interact with other
systems. In particular, networked systems implement advertised capabilities as
protocols over observable actions that are defined in their interfaces. Usually,
the interface signature abstracts the specific middleware functions that the sys-
tem calls to carry out actions in the network. However, this is due to the fact
that existing interface definition languages are closely tight to a specific mid-
dleware solution, while we target pervasive networking environments hosting
heterogeneous middleware solutions. The specification of an action should then
be enriched with the one of the middleware function that is specifically used to
carry out that action; indeed, an observable action in an open pervasive network
is the conjunction of an application-layer with a middleware-layer function. Mid-
dleware functions then need to be unambiguously characterized, which leads us
to introduce a middleware ontology that defines key concepts associated with
state-of-the-art middleware API, as presented in the next section.

Given the above, the interface of a networked system is defined as a set of
actions where each action is described as a tuple: < mf , a, I, O >, where: mf

denotes a middleware function; a denotes the application action; I (resp. O)
denotes the set of inputs (resp. outputs) of the action. Moreover, as detailed
in Section 4.2, the tuple elements are ontology concepts so that their semantics
may be reasoned upon.

As an illustration, Figure 1712 gives the interface signatures associated with
the infrastructure-based implementation of photo sharing. The interfaces refer
to ontology concepts from the middleware and application-specific domains of
the target scenario; however, this does not prevent general understanding of
the signatures given the self-explanatory naming of concepts. Three interface
signatures are introduced, which are respectively associated with the producer,
consumer and server networked systems. The definition of the systems’ actions
specify the associated SOAP functions, i.e., the client-side application actions are
invoked though SOAP middleware using the SOAP-RPCCall function followed

12 As defined in the next section, photoFile and photoComment include photoID.

Middleware-layer Connector Synthesis 21

by the SOAP-RPCReceiveReply function, while they are processed on the server
side using the two functions SOAP-RPCReceiveCall and SOAP-RPCReply. The
specific applications actions are rather straightforward from the informal sketch
of the scenario introduced in Section 1. For instance, the producer invokes the
server operations Authenticate and UploadPhoto for authentication and photo
upload, respectively. The consumer may possibly search for, download or com-
ment photos, or download comments. Finally, the actions of the photo sharing
server are complementary to the client actions.

Interfacephoto sharing producer = {
< SOAP -RPCCall, Authenticate,< login >, ∅ >,
< SOAP -RPCReceiveReply,Authenticate, ∅, < authenticationToken >>,
< SOAP -RPCCall, UploadPhoto,< photo >, ∅ >
< SOAP -RPCReceiveReply, UploadPhoto, ∅, < acknowledgment >>

}
Interfacephoto sharing consumer = {
< SOAP -RPCCall, SearchPhotos,< photoMetadata >, ∅ >,
< SOAP -RPCReceiveReply, SearchPhotos, ∅, < photoMetadataList >>,
< SOAP -RPCCall,DownloadPhoto,< photoID >, ∅ >,
< SOAP -RPCReceiveReply,DownloadPhoto, ∅, < photoF ile >>,
< SOAP -RPCCall,DownloadComment,< photoID >, ∅ >,
< SOAP -RPCReceiveReply,DownloadComment, ∅, < photoComment >>,
< SOAP -RPCCall, CommentPhoto,< photoComment >, ∅ >
< SOAP -RPCReceiveReply, CommentPhoto, ∅, < acknowledgment >>

}
Interfacephoto sharing server = {
< SOAP -RPCReceiveCall, Authenticate,< login >, ∅ >,
< SOAP -RPCReply,Authenticate, ∅, < authenticationToken >>,
< SOAP -RPCReceiveCall, UploadPhoto,< photo >, ∅ >,
< SOAP -RPCReply, UploadPhoto, ∅, < acknowledgment >>,
< SOAP -RPCReceiveCall, SearchPhotos,< photoMetadata >, ∅ >,
< SOAP -RPCReply, SearchPhotos, ∅, < photoMetadataList >>,
< SOAP -RPCReceiveCall,DownloadPhoto,< photoID >, ∅ >,
< SOAP -RPCReply,DownloadPhoto, ∅, < photoF ile >>,
< SOAP -RPCReceiveCall,DownloadComment,< photoID >, ∅ >,
< SOAP -RPCReply,DownloadComment, ∅, < photoComment >>,
< SOAP -RPCReceiveCall, CommentPhoto,< photoComment >, ∅ >,
< SOAP -RPCReply, CommentPhoto, ∅, < acknowledgment >>

}

Fig. 17. Interface signature of infrastructure-based photo sharing

Unlike the infrastructure-based implementation, the peer-to-peer-based photo
sharing defines a single interface signature (see Figure 18), as all the peers feature
the same capability. The interface further illustrates the naming of actions after
domain data types of the application data instead of operations since the actions

22 Issarny, Bennaceur, and Bromberg

Interfacephoto sharing = {
< Out, PhotoMetadata, ∅, < photoMetadata >>,
< Out, PhotoF ile, ∅, < photoF ile >>,
< Rdg, PhotoMetadata,< photoMetadata >,< photoMetadataList >>,
< Rd, PhotoF ile,< photoID >,< photoF ile >>,
< Rd, PhotoComment,< photoID >,< photoComment >>,
< Out, PhotoComment, ∅, < photoComment >>,
< In, PhotoComment,< photoID >,< photoComment >>,
< Rd, PhotoComment,< photoID >,< photoComment >>

}

Fig. 18. Interface signature of Peer-to-Peer-based photo sharing

are data-centric and are performed through functions of the Lime13 tuple-space
middleware.

Capability protocol. Given the networked system’s interface signature, the
behavior of the system’s capabilities is specified as protocols over the system’s
actions defined in the interface signature. Such protocols need to be explicitly
defined using some concurrent language, as part of the networked system’s ad-
vertisements. Alternatively, the protocol specification may be learned in a sys-
tematic way based on the system’s interfaces as investigated in the companion
chapter on automata learning [18]. Different languages may be considered for
such a specification from formal modeling to programming languages.

Formal languages are a prerequisite for automated reasoning about matching
and mediator generation while well-established language from the Web service
domain, such as BPEL14, are easier for developer to deal with. Indeed, BPEL
offers many advantages for the definition of processes, among which: (i) the
specification of both data and control flows that allow identifying causally inde-
pendent actions; (ii) the formal specification of BPEL in terms of process algebra
that allows abstracting BPEL processes for automated reasoning about protocol
matching [20]; and (iii) the rich tool sets coming along with BPEL, which in par-
ticular ease process definition by developers. However, same as for the interface
signature definition, the language must be generalized to not be only specific
to the Web service technology. Precisely, BPEL needs to be enriched so as to
support interaction with networked systems using other interaction patterns and
protocols than those classically associated with Web services, which can be ad-
dressed in a systematic way using the BPEL extension mechanism. Therefore,
BPEL may be used by developers to specify the protocol implemented by the
networked systems and automatically translated into FSP process algebra.

For illustration, Figure 3 gives the FSP-based specification of the protocols
associated with a SOAP-based implementation of the infrastructure-based ver-
sion of photo sharing application, while Figure 19 introduces the specification of

13 http://lime.sourceforge.net
14 http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

Middleware-layer Connector Synthesis 23

1 //Peer-to-Peer-based application specification
2 set Lime PhotoSharing Actions = {photoMetadata, photoF ile, photoComment}
3 PhotoSharingPeer = (req.photoMetadata→Consumer |prov.photoMetadata→ Producer),
4 Producer = (prov.photoF ile→PhotoSharingPeer),
5 Consumer = (req.photoF ile→Consumer |req.photoComment→Consumer
6 |prov.photoComment→Consumer |req.photoF ile→PhotoSharingPeer
7 |req.photoComment→PhotoSharingPeer
8 |prov.photoComment→ PhotoSharingPeer |terminate→END).

9 //Lime middleware Specification
10 Lime Reader(X =′ tuple) = (req.[X] →P1),
11 P1 = (rd[X] →Lime Reader |rdp[X] →Lime Reader
12 | rdg[X] →Lime Reader |in[X] →Lime Reader
13 | inp[X] →Lime Reader |ing[X] →Lime Reader
14 | terminate→ END).
15 Lime Writer(X =′ tuple) = (prov.[X] →P2),
16 P2 = (out[X] →Lime Writer |outp[X] →Lime Writer
17 | outg[X] →Lime Writer |terminate→END).
18 Lime glue(X =′ tuple) = (write[X] → P0 |outp[X] → P0 |outg[X] → P0
19 | terminate→END),
20 P0 = (rd[X] →P0 |rdp[X] →P0 |rdg[X] →P0
21 | in[X] →Lime glue |inp[X] →Lime glue |ing[X] →Lime glue).

22 const NumberOfPeers = 2
23 ‖Lime PhotoSharing = ([i : 1..NumberOfPeers]:PhotoSharingPeer
24 ‖(forall [tuple:Lime PhotoSharing Actions] Lime Writer(tuple))
25 ‖(forall [tuple:Lime PhotoSharing Actions] Lime Reader(tuple))
26 ‖(forall [tuple:Lime PhotoSharing Actions] Lime glue(tuple))).

Fig. 19. Peer-to-Peer-based photo sharing

a Lime-based implementation of the peer-to-peer version of the photo sharing
application. The protocol executed by a Lime-based networked system allows for
both production and consumption of photo files. On the other hand, there are
different protocols for the producer, consumer and server for the SOAP-based
implementation due to the distinctive roles imposed by the service implemented
by the photo sharing server. Still, emergent connectors shall enable seamless
interaction of the Lime-based photo sharing implementation with systems im-
plementing capabilities of the infrastructure-based photo sharing.

4.2 Ontology for Mediation

Realizing emergent connectors primarily relies on reasoning about capability
matching together with identifying matching observable actions among the ac-
tions performed by networked systems. Ontologies play a key role in identifying
such matching and allow overcoming the inherent heterogeneity of pervasive
networked systems. Indeed, “an ontology is a formal, explicit specification of a
shared conceptualization” [49]. Such an ontology is then assumed to be shared
widely. In addition, work on ontology alignment enables dealing with possible
usage of distinct ontologies in the modeling of the different networked systems
[17].

24 Issarny, Bennaceur, and Bromberg

Different relations may be defined between ontology concepts. The subsump-
tion relation (in general named is-a) is essential since it allows, besides equiva-
lence, to match between concepts based on inclusion. Precisely: a concept C is
subsumed by a concept D in a given ontology O, noted C v D, if in every model
of O the set denoted by C is a subset of the set denoted by D [2].

Towards enabling emergent connectors, we introduce a middleware ontology
that forms the basis of middleware protocol mediation. In addition, domain-
specific application ontologies characterizing application actions serve defining
both control- and data-centric concepts.

<<owlClass>>
RemoteProcedureCallAPI

<<owlClass>>
ReceiveReply

<<owlClass>>
ReceiveCall

<<owlClass>>
Reply

<<owlClass>>
MethodName

<<owlClass>>
Arguments

<<owlClass>>
ReturnValue

0..1 + follows {some}

+hasInput {some}

+hasOutput {some}

+hasOutput {some}

<<owlClass>>
SharedMemoryAPI

<<owlClass>>
Read

<<owlClass>>
Write

<<owlClass>>
DataChannel

<<owlClass>>
Data

+hasIntput {some}
+hasOutput {some}

+hasInput {some} +hasOutput {some}

<<owlClass>>
EventAPI

<<owlClass>>
Subscribe

<<owlClass>>
GetEvent

<<owlClass>>
Publish

<<owlClass>>
EventType

<<owlClass>>
Event

0..1 + follows {some}

+hasOutput {some}

+hasIntput {some} +hasOutput {some}+hasOutput {some}

+hasOutput {some}

<<owlClass>>
MessageAPI

<<owlClass>>
SendMessage

<<owlClass>>
ReceiveMessage

<<owlClass>>
MessageChannel

<<owlClass>>
Message

+hasOutput {some}

+hasOutput {some} +hasOutput {some}

+hasOutput {some}

+hasInput {some}

+IsAssociatedWith {some}

(d) Message-based middleware

a) Remote procedure call middleware (b) Shared memory middleware

(c) Event-based middleware

+hasInput {some}

+hasOutput {some}

<<owlClass>>
SOAP-RPCReply

<<owlClass>>
SOAP-

RPCReceiveReply

<<owlClass>>
SOAP-

RPCReceiveCall

<<owlClass>>
SOAPRequest

<<owlClass>>
SOAPResponse

<<owlClass>>
In

<<owlClass>>
Inp

<<owlClass>>
Ing

<<owlClass>>
Rd

<<owlClass>>
Rdp

<<owlClass>>
Rdg

<<owlClass>>
Out

<<owlClass>>
Outg

<<owlClass>>
TupleTemplate

<<owlClass>>
Tuple

<<owlClass>>
SOAP-RPCCall

<<owlClass>>
Call

0..1 + follows {some}

+hasInput {some}

Fig. 20. Middleware ontology

Middleware ontology. As discussed in Section 2.1, state-of-the-art middleware
may be categorized according to four middleware types regarding provided com-
munication and coordination services [50]: remote procedure call, shared mem-
ory, event-based and message-based. As depicted in Figure 20 and more specif-
ically with concepts defined in white boxes, the proposed middleware ontology
is structured around these four categories, which serve as reference enabling to
align functions of different middleware solutions. Indeed, the reference middle-
ware ontology can be refined into concepts associated with functions of a specific
middleware. This is illustrated in the figure by the grayed boxes that define con-

Middleware-layer Connector Synthesis 25

cepts of the Lime and SOAP-based middleware solutions that we specifically
consider in our photo sharing scenario. In addition to the is-a relation that
is denoted by a white arrow, the middleware ontology introduces a number of
customized relations between concepts: hasOutput (resp. hasInput) to charac-
terize output (resp. input) parameters. We also use relations from best practices
in ontology design15 as illustrated by the follows relation that serves defining
sequence patterns.

The ontology is given as a set of UML diagrams. In Figure 20.a), the ontol-
ogy concepts associated with RPC-based middleware include the Call function
parameterized by the method name and arguments, which must must be fol-
lowed by the ReceiveReply function to receive the result of the call. On the
server side, the ReceiveCall function to catch an invocation is followed by the
execution of the Reply function to return the result. The ontologies of functions
for shared memory and message-based middleware are rather straightforward.
In the former, the shared memory is accessed through Read/Write functions pa-
rameterized by the associated data and corresponding channel (see Figure 20.b).
In the latter, messages are exchanged using the SendMessage and ReceiveMes-
sage functions parameterized by the actual message and related channel (see
Figure 20.d). Regarding event-based middleware, events are published using the
Publish function parameterized by the specific event; while they are consumed
through the GetEvent function after registering for the specific event type using
the Subscribe function (see Figure 20.c).

The proposed ontology serves aligning the functions of middleware of the
same type through mapping onto the reference functions, which is illustrated
for the specific cases of SOAP-based and Lime middleware. Heterogeneity in the
underlying implementation may then be overcome using transparent middleware
interoperability solutions (see Section 3.3).

A further challenge for emergent connectors in pervasive networking environ-
ments is to enable mediation among different middleware types. To enable such
mediation, we introduce a further abstraction allowing cross-type alignment of
middleware functions. More specifically, according to their semantics, middle-
ware functions may be aligned based on whether they produce or consume an
action in the network. We hence define the mapping of middleware functions
onto abstract input and output (denoted by an overbar) actions, which are pa-
rameterized by the application action a and associated input I and output O.

The alignment of (possibly sequence of) middleware functions as abstract
input and output actions is summarized in Figure 21. The alignment defined
for shared memory and message-based middleware functions is rather direct:
the Write and SendMessage functions are mapped onto an output action; while
the Read and ReceiveMessage translate into an input action. Note that Read
is possibly parameterized with I if the value to be read shall match some con-
straints, as, e.g., enabled by tuple space middleware. The alignment for the
event-based middleware functions is straightforward for Publish: publication of
an event maps onto an output action. The dual input action is performed by the

15 http://ontologydesignpatterns.org

26 Issarny, Bennaceur, and Bromberg

GetEvent function, which is preceded by at least one invocation of Subscribe on
the given event16. The semantics of RPC functions follows from the fact that
it is the server that produces an application action, although this production is
called upon by the client. Then, the output action is defined by the execution
of ReceiveCall followed by Reply, while the dual input action is defined by the
Invoke function.

<ReceiveCall, a, I, >

<Reply, a, , O>

Middleware
Agnostic LTS

<a, I, O>

RPC Server LTS

RPC Client LTS Event Subscriber LTS

Event Publisher LTS

Memory Reader LTS

Memory Writer LTS Message Sender LTS

Message Receiver LTS

<a, I, O>

<Write, a, , O>

<Read, a, I, O>

<Publish, a, , O>

<Subscribe, a, , >

<GetEvent, a, , O> (*)

<SendMessage, a, , O>

<ReceiveMessage, a, , O>

= MethodName
= Arguments
= ReturnValue

= DataChannel
= Data
= Data

= EventType
= Event

= MessageChannel
= Message

a
I
O

a
I
O

a
O

a
O

(*) Considers transient subscription only

Output action

Input action

<ReceiveReply, a, , O>

<Call, a, I, >

Fig. 21. Middleware alignment

1 Reader(X =′ data) = (req.[X] →P1),
2 P1 = (read[X] →Reader |terminate→ END).
3 Writer(X =′ data) = (prov.[X] →P2),
4 P2 = (write[X] →Writer |terminate→END).
5 SM glue(X =′ data) = (write[X] → P3 |terminate→END),
6 P3 = (read[X] →SM glue).

Fig. 22. Shared-memory middleware type specification

The given alignments abstract protocols associated with the realization of
capabilities as middleware-agnostic processes. As a result, protocols may be
matched based purely on their application-specific features. In more detail,
middleware-specific functions are abstracted as middleware functions from the
reference ontology, which are then translated into input and output actions
through the defined alignment. This is illustrated in Figure 22, which gives the
FSP-based protocol associated with the peer-to-peer photo sharing implemen-

16 Note that for the sake of conciseness, the figure depicts only the case where a Sub-
scribe is followed by a single GetEvent.

Middleware-layer Connector Synthesis 27

1 Reader(X =′ data) = (input[X] →Reader|terminate→ END).
2 Writer(X =′ data) = (output[X] →Writer|terminate→ END).
3 SM glue(X =′ data) = (output[X] → P |terminate→END),
4 P = (input[X] →SM glue).

Fig. 23. Middleware-agnostic peer-to-peer photo sharing

tation, after abstracting middleware-specific functions into reference functions
(see Figure 23) and further aligning onto middleware-agnostic input and output
actions. Thanks to the alignment of middleware functions, processes may be
matched against the realization of matching application-specific actions whose
semantics is given by the associated ontology.

Application-specific ontology. The subsumption relation of ontologies serves
matching application-specific capabilities and actions against each other. Basi-
cally, and as detailed in the next section, a required capability/action matches
a provided one if the former is subsumed by the latter.

For illustration, Figure 24 gives an excerpt of the domain-specific ontology
associated with our photo sharing scenario, which shows the subsumptions hold-
ing among the various concepts defining the interfaces of the networked systems
implementing the scenario.

<<owlClass>>
Photo

<<owlClass>>
PhotoMetadataList

<<owlClass>>
PhotoFile

hasPhotoID: string
hasContent: hexBinary

<<owlClass>>
PhotoMetadata

hasPhotoID: string
hasLongitude: double
hasLatitude: double
hasDetails: string

<<owlClass>>
DownloadPhoto

<<owlClass>>
UploadPhoto

<<owlClass>>
SearchPhoto

<<owlClass>>
PhotoComment

hasPhotoID: string
hasComment: string

<<owlClass>>
CommentPhoto

<<owlClass>>
Photo-Sharing

<<owlClass>>
Photo-Sharing_Producer

<<owlClass>>
Photo-Sharing_Consumer

<<owlClass>>
Photo-Sharing_Server

<<owlClass>>
DownloadComment

Fig. 24. Photo sharing ontology

Note that the application-specific ontology not only describes the semantics
and relationships related to data but also to the functionalities and roles of the
networked systems, such as Photo-Sharing Producer, Photo-Sharing Consumer,

28 Issarny, Bennaceur, and Bromberg

and Photo-Sharing Server. It also defines the semantics of the operations per-
formed on data, such as UploadPhoto, DownloadPhoto, and SearchPhoto. Fur-
thermore, it relates data to operations: data subsumes the operations performed
on them. The rationale behind this statement is that by having access to data,
any operation could be performed on it. For example PhotoFile subsumes Down-
loadPhoto since by providing access to a photo file, one can download it.

Finally, subsumption is not the panacea to reason about semantic relation-
ships between concepts and many other relations such as sequence [16] or part-
whole17 should be specified. We believe that best practices of ontology design
and ontology engineering18 and the use of ontology design patterns19 may prove
very beneficial to automatically discover and reuse semantic relations between
concepts.

4.3 Emergent Connectors

Given the models characterizing networked systems that are introduced in Sec-
tion 4.1 and related ontology definition, emergent connectors are enabled through
matching and mapping functions defined over the actions of networked systems.
Precisely, if two networked systems implement matching capabilities, then they
may possibly coordinate towards the realization of the capability. This is achieved
by mapping the respective actions of the systems according to their ontology-
based semantics, and then synthesizing the mediator that adapts accordingly
the interaction protocols executed by the networked systems.

Capability matching. The first step in identifying the possible matching of two
networked systems is to assess whether they respectively provide and require a
matching capability. Precisely, and following the definition of semantic matching
of capabilities [41], we say that capability CR =< Req, CR, IR, OR > semantically
matches with capability CP =< Prov, CP , IP , OP >, noted CR ↪→ CP , iff in the
given ontology:

– CR v CP ,
– IP v IR (which is a shorthand notation for subsumption between sets of

ontology concepts), and
– OR v OP .

Note that a capability CR of type Req produces the inputs IR and consumes
the corresponding outputs OR. In a dual manner, a capability CP of type Prov
consumes the inputs IP and produces the corresponding outputs OP .

In addition, since the capability is related to semantic concepts, we make a
similar assumption to that made in the Semantic Web [41], i.e., by specifying CP
as the functional concept, the provider commits to offering all the functionalities

17 http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/index.html
18 http://www.w3.org/2001/sw/BestPractices/OEP/
19 http://ontologydesignpatterns.org

Middleware-layer Connector Synthesis 29

subsumed by CP and output consistent with every concept subsumed by OP . If
this is not the case, then the functionality/output should be restricted to those
verifying the above assumption. Similarly, the requester commits to provide any
input consistent with the classes that IR subsumes. However, if the input/output
are related to syntactic (XML-based) types and not to semantic concepts, it
becomes important to verify the Liskov Substitution Principle (LSP) [32] in the
following way:

– CP subtypeOf CR, which corresponds to the LSP co-variance rule;

– IR subtypeOf IP , which corresponds to the LSP contra-variance rule for the
outputs; and

– OP subtypeOf OR, which corresponds to the LSP co-variance rule.

That being the case, if the semantic concept is automatically extracted or learned
from the syntactic description, then it should be restricted to the most specific
concept. Moreover, since there is a close relation between the semantic concepts
and the related syntactic objects, it is required to have specifications or methods
enabling transformations between the different concepts and types.

In the case where one capability is required and provided (i.e., of type
Req Prov) by a networked system and the other capability is required (resp.
provided) by the other networked system, the same condition as above applies
considering that the Req Prov capability is considered as being provided and
required. For instance, given (1) and (2) below, we have (3):

PhotoSharingConsumer = < Req, Photo− Sharing Consumer,< PhotoComment >,< Photo >> (1)
PhotoSharing = < Req Prov, Photo− Sharing,< Photo > ∨ < PhotoComment >,

< Photo, PhotoComment >> (2)
PhotoSharingConsumer ↪→ PhotoSharing (3)

Given capability matching, the emergent connector between the matching
networked systems should mediate possible behavioral mismatches in their re-
spective middleware-agnostic interaction protocols. Towards that goal, we build
on basic mediation patterns.

Mediation patterns. Possible behavioral mismatches for input actions need
to be solved so as to ensure that any input action is synchronized with an output
action of the matching networked system with respect to the realization of the
capability of interest. On the other hand, the absence of consumption of an
output action does not affect the behavior of the networked system as long as
deadlock is prevented by the emergent connector at runtime. Still, synthesis
of a protocol mediator is known as a computationally hard problem for finite
state systems in general [11] and thus requires heuristics to make the problem
tractable. Towards that goal, we focus on enabling basic mediation patterns [45]
as introduced in the literature for, e.g., Semantic Web Services [48]. We then
account for basic mediation patterns as follows:

30 Issarny, Bennaceur, and Bromberg

– Ordering mismatch: This concerns the re-ordering of actions so that net-
worked systems may indeed coordinate. In the case of BPEL specification,
causally independent actions may be identified through data-flow analysis,
hence enabling to introduce concurrency among actions and thus supporting
acceptable re-ordering.

– Extra output action (or missing input action): As discussed above,
extra output actions are simply discarded from the standpoint of behavioral
matching. Obviously, the associated concrete mediator should handle any
extra synchronous output action to avoid deadlock.

– Extra input action (or missing output action): Any input action needs
to be mapped to an output action of the matching networked system. How-
ever, in this case, there is no such output action that directly maps to the
input action. In a first step, we do not handle these mismatches as they
would significantly increase the complexity of protocol adaptation.

– Splitting of actions: Splitting actions relate to having an action of one
system realized by a number of actions of the other. Then, an input action
may be split into a number of output actions of the matching networked
system if such a relation holds from the domain-specific ontology giving the
semantics of actions. On the other hand, we do not deal with the splitting
of output actions, which is an area for future work given the complexity it
introduces.

– Merging of actions: The merging of actions is the dual of splitting from
the standpoint of the matching networked system. Then, we only handle the
merging of output actions.

Interface mapping. Following the above, interface mapping serves identifying
mapping among the actions of the interaction protocols run by the networked
systems that should coordinate towards the realization of a given capability.

Let two networked systems that respectively implement the matching capa-
bilities C1 and C2. Let further IC1 (resp. IC2) be the set of middleware-agnostic
actions executed by the protocol realizing C1 (resp. C2); IC1 and IC2 are then
subsets of the actions defined in the networked systems’ interfaces, which are
further made middleware-agnostic according to the alignment defined in Sec-
tion 4.2. We introduce the function MapI(IC1 , IC2) which identifies the set of all
possible mappings of all the input actions of IC1 (resp. IC2) with actions of IC2
(resp. IC1), according to the semantics of actions. Formally:

MapI(IC1 , IC2) =
⋃
<a,I,O>∈IC1

{< a, I,O >7→ map(< a, I,O >, IC2)}
⋃⋃

<a′,I′,O′>∈IC2
{< a′, I ′, O′ > 7→ map(< a′, I ′, O′ >, IC1)}

where:

map(< a, Ia, Oa >, I) = {<< bi, Ii, Oi >∈ I >i=1..n |
a v ∪i{bi}
∧ Ii≤n v (∪j<i{Oj}) ∪ {Ia}
∧ Oa v (∪j<i{Oj}) ∪ {Ia}
}

and
∀seq1 ∈ map(< a, Ia, Oa >, I), 6 ∃seq2 ∈ map(< a, Ia, Oa >, I)|seq2 ≺ seq1

Middleware-layer Connector Synthesis 31

where ≺ denotes the inclusion of sequences. In the above definition, the order-
ing of actions given by the sequence follows from the sequencing of actions in
the protocol realizing the capability. The definition is further given in the ab-
sence of concurrent actions to simplify the notations, while the generalization to
concurrent actions is rather direct.

As an illustration, we give below the interface mapping between the Photo-
SharingConsumer and PhotoSharing capabilities. All the input actions of Photo-
SharingConsumer have a corresponding output action in PhotoSharing. On the
other hand, the input actions of PhotoSharing associated with the production
of photos do not have matching output actions in PhotoSharingConsumer. As
a result, we support the adaptation of protocols for interaction between Pho-
toSharingConsumer and PhotoSharing regarding the consumption of photos by
the former only, as further discussed in the next section.

Map(Interface’photo sharing consumer,Interface′photo sharing)= {
< SearchPhotos, photoMetadata, photoMetadataList >

7→ {<< PhotoMetadata, ∅, photoMetadata >>},
< DownloadPhoto, photoID, photoF ile >

7→ {<< PhotoF ile, ∅, photoF ile >>},
< CommentPhoto, photoComment, acknowledgment >

7→ {<< PhotoComment, ∅, photoComment >>},
< DownloadComment, photoID, photoComment >

7→ {<< PhotoComment, ∅, photoComment >>},
< PhotoComment, photoID, photoComment > 7→ ∅,
< PhotoMetadata, photoMetadata, photoMetadataList > 7→ ∅,
< PhotoF ile, photoID, photoF ile > 7→ ∅

}

Mediator synthesis. Given interface mappings returned by MapI , we need
to identify whether the protocols associated with the matching capabilities may
indeed coordinate, i.e., the concurrent execution of the two protocols successfully
terminates. However, in a first step , we assume that it exists a single mapping
for each input action. Formally, let:

I ′1 = {αi = 〈ai, Iai , Oai〉}i=1..n ∪
{
βj =

〈
bj , Ibj , Obj

〉}
j=1..m

be the abstract interface associated with required capability C1, and:

I ′2 =
{
α′i′ =

〈
a′i′ , Iai′ , Oai′

〉}
i′=1..n′ ∪

{
β′j′ =

〈
b′j′, Ib′j′ , Ob′j′

〉}
j′=1..m′

be the abstract interface associated with provided capability C2.
From MapI(I ′1, I ′2), we have:

∀αi=1..n ∈ I ′1 : αi 7→
〈
β′1, ..., β

′
n

〉
| β′j ∈ I ′2

We then define the processes Mαi=1..n
that deal with the splitting/merging

of C1 actions by allowing the synchronization of each input action αi=1..n with
its corresponding output actions:

32 Issarny, Bennaceur, and Bromberg

Mαi=1..n = β′1 → ...→ β′n → αi → Mαi=1..n

We further define the processes Mβ′
j′=1..k′

for any extra output action β′j′ ∈ I ′2
that is not required by any input action αi=1..n ∈ I ′1, as follows:

Mβ′
j′=1..k′

= β′j′=1..k′ → Mβ′
j′=1..k′

We define similarly Mα′
i′=1..n′ and Mβj=1..k

for C2.
A process P1 associated with capability C1 behaviorally matches a process P2

associated with capability C2 under Map(I ′1, I ′2), noted P1↪→P P2, iff

P1 ||
i=1..n

Mαi=1..n ||
j′=1..k′

Mβ′
j′=1..k′ ≤ P2 ||

i′=1..n′
Mα′

i′=1..n′ ||
j=1..k

Mβj=1..k

where ≤ refers to trace refinement as defined in [24] and guarantees that mediated
P1 can safely communicate with mediated P2.

Applying the above definition, we can check that:

Pphoto sharing consumer↪→PPphoto sharing

Consequently, the emergent connector mediator is defined as follows:

‖Emergent Connector Mediator=(
||

i=1..n

Mαi=1..n

)
||

(
||

j′=1..k′
Mβ′

j′=1..k′

)
||
(
||

i′=1..n′
Mα′

i′=1..n′

)
||

(
||

j=1..k

Mβj=1..k

)

4.4 From Abstract to Concrete Emergent Connectors

Once the model of the emergent connector has been synthesized, it needs to be
transformed into a concrete software artifact. The concretization is threefold:

1. Parsing the network messages in order to generate the corresponding ac-
tions; this parsing is performed by a Listener specific to each middleware
implementation (see Figure 25A).

2. Generating the code corresponding to the mediator (see Figure 25B).
3. Composing the abstract actions in order to generate the corresponding net-

work message; this is the role of an Actuator specific to each middleware
implementation (see Figure 25C).

Networked System 1Networked System 1

Application 1Application 1

Middleware 1Middleware 1

Networked System 2Networked System 2

Application 2Application 2

Middleware 2Middleware 2
Listener 2

Actuator 2

Listener 1

Actuator 1

Emergent ConnectorEmergent Connector

Mediator

A A

B

C C

Fig. 25. Concretizing the mediator

Middleware-layer Connector Synthesis 33

Towards the above, we adopt results in the area of synthesis of concrete mid-
dleware protocols. Indeed, these last years two main approaches, z2z [10] and
Starlink [8], have emerged to synthesize middleware, which acts as gateways to
translate one protocol to another. More precisely, these approaches have instan-
tiated the direct bridge concepts, as it provides a high degree of expressiveness
and does not require modifications to existing applications. Both z2z and Star-
link are based on similar concepts (see Figure 26a,b): they provide an optimized
run-time system, and facilities for describing network protocol behaviors, mes-
sage structures, and translation logics. Such facilities come from the fact that
they rely on a high-level definition language that hides low level network details
and highlights only key properties of protocols. Hence, to get a generated gate-
way between two heterogeneous protocols, developers must write specifications
consisting of: (i) a protocol specification, describing how the protocols interact
with the network, (ii) a message specification, describing the structure of mes-
sage requests and responses, and (iii) a translation specification, describing how
to translate messages among protocols (See Figure 26, ¶,·). These specifica-
tions enable to generate software components such as listeners, actuators and
mediators that are plugged into a runtime system to form, from a formal point
of view, a direct bridging connector (as introduced in Section 3.1). Listeners,
and actuators enable respectively to extract required informations relevant to
the interacting parties, and to generate extracted informations in an adequate
format according to protocols being used. The mediator applies the required
translation logic to resolve mismatches between protocols.

Developer

spec

Protocol, message
and translation
specification compiler

Actuator
Mediator

Listener
App1

Middleware
A

Runtime System

App2

Middleware
B

cation

Generation

z2z approach

spec
Protocol, message

and translation
specification

Generated
code

c to
Starlink

y interpretor

c to
z2z

Developer

a

b

1

2

Starlink approach

Listener

Actuator

Fig. 26. z2z and Starlink approaches to synthesize middleware

34 Issarny, Bennaceur, and Bromberg

Although z2z and Starlink are closed together in their design, they differ
strongly in the way code plugged into the runtime is generated. With z2z, gen-
erated gateways are statically built. Hence, once such gateways are deployed in
one environment, it is not anymore possible to alter afterwards the translation
being processed. Consequently, in environments where systems are composed
dynamically, interoperability can not be guaranteed. In general, z2z targets en-
vironments where gateways need to be embedded in resource constraint devices
with performances in mind. Specifications in z2z are expressed in a C-like lan-
guage and are compiled at design time. The z2z compiler relies on advanced
compilation strategies to perform static verifications at the specification level
and to produce highly optimized native code dedicated to the translation be-
tween two specific protocols. On the contrary, Starlink is designed with both
dynamicity and genericity in mind. Specifications in Starlink are processed dy-
namically at runtime, and the code plugged into the runtime is done on the fly
according to protocols currently used in the environment (See Figure 26b). To
this end, compared to z2z, the Starlink runtime embeds both generic parsers
and composers that are customized dynamically according to the specifications
being used. It is important to note that in Starlink, specifications are interpreted
and not compiled as in z2z. Hence, it has a potential impact on performance.

4.5 Related Work

Protocol interoperability has been the focus of significant research since the early
days of networking. This has initially led to the study of systematic approaches
to protocol conversion (i.e., synthesizing a mediator that adapts the two inter-
acting protocols that need to interoperate) based on formal methods as surveyed
in [11]. Existing approaches may in particular be classified into two categories
depending on whether: (i) they are bottom-up, heuristic-based, or (ii) top-down,
algorithmic-based. In the former case, the conversion system derives from some
given protocol, which may either be inferred from the semantic correspondence
between the messages of the interacting protocols [30] or correspond to the ref-
erence protocol associated with the service to be realized through protocol in-
teraction [39]. In the latter case, protocol conversion is considered as finding the
quotient between the two interacting protocols. Then, if protocols are specified
as finite-state systems, an algorithm computing the quotient is possible but the
problem is computationally hard since it requires an exhaustive search of pos-
sibilities [11]. Then, the advantage of the bottom-up approach is its efficiency
but at the expense of: (i) requiring the message mapping or reference protocol
to be given and further (ii) not identifying a converter in all cases. On the other
hand, the bottom-up approach will always compute a converter if it exists given
the knowledge about the semantics of messages, but at the expense of significant
complexity. This has led to the further development of formal approaches to pro-
tocol conversion so as to improve the performance of proposed algorithms [29].
Our work extensively builds on these formal foundations, adopting a bottom-up
approach in the form of interface mapping. However, unlike the work of [30], our
interface mapping is systematically inferred, thanks to the use of ontologies. In

Middleware-layer Connector Synthesis 35

addition, while the proposed formal approaches pave the way for rigorous rea-
soning about protocol compatibility and conversion, they are mostly theoretical,
dealing with simple messages (e.g., absence of parameters).

More practical treatment of protocol conversion is addressed in [52], which fo-
cuses on the adaptation of component protocols for object-oriented systems. The
solution is top-down in that the synthesis of the mediator requires the mapping
of messages to be given. By further concentrating on practical application, the
authors have primarily targeted an efficient algorithm for protocol conversion,
leading to a number of constraining assumptions such as synchronous commu-
nication. In general, the approach is quite restrictive in the mediation patterns
that it supports by not buffering messages and thus preventing the handling
of the merging/splitting or re-ordering of messages in general. Then, while our
solution relates to this specific proposal, it is more general by dealing with more
complex mediation patterns and further inferring message mapping from the
ontology-based specification of interfaces. Our solution further defines protocol
compatibility by in particular requiring that any input action (message recep-
tion) has a corresponding (set of) output action(s), while the definition of [52]
requires the reverse. Our approach then enforces networked systems to coordi-
nate so as to update their states as needed, based on input from the environment.

More recently, with the emergence of Web services and advocated universal
interoperability, the research community has been investigating how to actually
support service substitution so as to enable interoperability with different imple-
mentations (e.g., due to evolution or provision by different vendors) of a service.
While early work has focused on semi-automated, design-time approaches [37,
42], latest work concentrates on automated, run-time solutions [12]. Our work
closely relates to the latest effort, sharing the exploitation of ontology to reason
about interface mapping and the further synthesis of protocol converter behav-
iors according to such mapping, using model checking [12]. However, our work
goes one step further by not being tight to the specific Web service domain but in-
stead considering highly heterogeneous pervasive environments where networked
systems may build upon diverse middleware technologies and hence protocols.

Our work also closely relates to significant effort from the semantic Web
service domain and in particular the WSMO (Web Service Modeling Ontology)
initiative that defines mediation as a first class entity for Web service modeling
towards supporting service composition. The resulting Web service mediation
architecture highlights the various mediations levels that are required for sys-
tems to interoperate in a highly open network [48]: data level, functional level,
and process level. This has in particular led to elicit base patterns for pro-
cess mediation together with supporting algorithms [14, 51]. However, as for the
above-mentioned work on Web service adaptation, mediation is focused on the
upper application layer, ignoring possible mismatches in the lower protocol lay-
ers. In other words, work from the Web service arena so far concentrates on
interoperability among networked systems from the same technology domain.
However, pervasive networks will increasingly be populated by highly heteroge-
neous systems, spanning, e.g., from systems for sensing/actuating to enterprise

36 Issarny, Bennaceur, and Bromberg

information systems. As a result, systems run disparate middleware protocols
that need to be reconciled on the fly.

The issue of middleware interoperability has deserved a great deal of atten-
tion since the emergence of middleware. Solutions were initially dealing with di-
verging implementations of the same middleware specification and then evolved
to address interoperability among different middleware solutions, acknowledging
the diversity of systems populating the increasingly complex distributed systems
of systems. As already discussed, one-to-one bridging was among the early ap-
proaches [40] and then evolved into more generic solutions such as Enterprise
Service Bus [13], interoperability platforms [21] and transparent interoperabil-
ity approaches [9, 36]. Our work takes inspiration from the latest transparent
interoperability approach, which is itself based on early protocol conversion ap-
proaches. Indeed, protocol conversion appears the most flexible approach as it
does not constrain the behavior of networked systems. Then, our overall con-
tribution comes from the comprehensive handling of protocol conversion, from
the application down to the middleware layers, which have so far been tackled
in isolation. In addition, existing work on middleware-layer protocol conversion
focuses on interoperability between middleware solutions implementing the same
interaction paradigm. On the other hand, our approach allows for interoperabil-
ity among networked systems based upon heterogeneous middleware paradigms,
which is crucial for the increasingly heterogeneous pervasive networking envi-
ronment.

5 Conclusion

The need to deal with the existence of different protocols that perform the same
function is not new and has been the focus of tremendous work since the 80s,
leading to the study of protocol mediation from both theoretical and practical
perspectives. However, while this could be initially considered as a transitory
state of affairs, the increasing pervasiveness of networking technologies together
with the continuous evolution of information and communication technologies
make protocol interoperability a continuous research challenge. As a matter of
fact, networked systems now need to compose on the fly while overcoming pro-
tocol mismatches from the application down to the middleware layer. Towards
that goal, this paper has discussed the foundations of emergent connectors, which
adapt the protocols run by networked systems that implement a matching func-
tionality but possibly mismatch from the standpoint of associated application
protocol and even middleware technology used for interactions. Enabling emer-
gent connectors specifically lies in the appropriate modeling of the networked
systems’ high-level functionalities and related protocols, for which we exploit
ontologies so as to enable unambiguous specification. Compared to related work
that deals with either automated protocol conversion/mediation or middleware
interoperability, our contribution lies in comprehensively dealing with both the
application and middleware layers. In addition, through the alignment of mid-

Middleware-layer Connector Synthesis 37

dleware concepts, we are able to deal with interoperability between networked
systems relying on heterogeneous middleware paradigms.

While this paper has surveyed the overall model-based approach enabling
emergent connectors, it comes along with concrete enablers to be deployed in
the network for actual enactment of the connectors [4], as studied in companion
chapter on the Connect architecture [22]. Enablers include universal discovery,
which in particular implements the matching and mapping relations discussed
in this paper, so as to enable networked systems to meet and compose on the
fly. However, it should be acknowledged that most legacy systems do not adver-
tise interfaces like the ones needed by emergent connectors but instead advertise
simple interface signatures, as common with today’s middleware. This leads the
Connect project to investigate learning enablers so as to enable automated
learning of interaction protocols [5, 25] as well as inference of capabilities from
interface signatures. Furthermore, while universal discovery enables networked
systems to compose abstractly through the proposed model-based approach to
emergent connection, concrete connectors need to be instantiated, which con-
cretize the proposed model-based protocol conversion according to actual middle-
ware protocols and application actions. Concretization of mediation processes is
in particular investigated based on the exploitation of domain-specific languages
as defined in Section 4.4. Preliminary prototypes of the Connect enablers are
being implemented and will be shortly released on the Connect Web site [28].

Acknoledgment. This work is partially supported by the FP7 ICT FET IP
Project CONNECT. The authors would also like to thank their colleagues Niko-
laos Georgantas, Rachid Saadi, Romina Spalazzese and Paola Inverardi for useful
discussion about this work.

References

1. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans.
Softw. Eng. Methodol. 6(3) (1997)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.:
The Description Logic Handbook. Cambridge University Press (2003)

3. Ben Mokhtar, S., Preuveneers, D., Georgantas, N., Issarny, V., Berbers, Y.: EASY:
Efficient semantic service discovery in pervasive computing environments with QoS
and context support. Journal of Systems and Software 81(5) (2008)

4. Bennaceur, A., Blair, G.S., Chauvel, F., Huang, G., Georgantas, N., Grace, P.,
Howar, F., Inverardi, P., Issarny, V., Paolucci, M., Pathak, A., Spalazzese, R.,
Steffen, B., Souville, B.: Towards an architecture for runtime interoperability. In:
Proceedings of ISoLA (2) (2010)

5. Bertolino, A., Inverardi, P., Pelliccione, P., Tivoli, M.: Automatic synthesis of be-
havior protocols for composable web-services. In: Proceedings of ESEC/SIGSOFT
FSE (2009)

6. Blair, G., Paolucci, M., Grace, P., Georgantas, N.: Interoperability in complex dis-
tributed systems. In: Bernardo, M., Issarny, V. (eds.) SFM-11: 11th International

38 Issarny, Bennaceur, and Bromberg

School on Formal Methods for the Design of Computer, Communication and Soft-
ware Systems – Connectors for Eternal Networked Software Systems. Springer
Verlag (2011)

7. Bromberg, Y.D.: Solutions to middleware heterogeneity in open networked envi-
ronment. Ph.D. thesis, Université de Versailles Saint-Quentin-en-Yvelynes (2006)

8. Bromberg, Y.D., Grace, P., Réveillère, L.: Starlink: runtime interoperability be-
tween heterogeneous middleware protocols. In: Proceedings of ICDCS 2011. IEEE
Computer Society (2011)

9. Bromberg, Y.D., Issarny, V.: INDISS: Interoperable discovery system for networked
services. In: Proceedings of Middleware (2005)

10. Bromberg, Y.D., Réveillère, L., Lawall, J.L., Muller, G.: Automatic generation of
network protocol gateways. In: Proceedings of Middleware (2009)

11. Calvert, K.L., Lam, S.S.: Formal methods for protocol conversion. IEEE Journal
on Selected Areas in Communications 8(1) (1990)

12. Cavallaro, L., Nitto, E.D., Pradella, M.: An automatic approach to enable replace-
ment of conversational services. In: Proceedings of ICSOC/ServiceWave (2009)

13. Chappell, D.A.: Enterprise Service Bus. O’Reilly (2004)
14. Cimpian, E., Mocan, A.: WSMX process mediation based on choreographies. In:

Proceedings of Business Process Management Workshop (2005)
15. Denaro, G., Pezzè, M., Tosi, D.: Ensuring interoperable service-oriented systems

through engineered self-healing. In: Proceedings of ESEC/SIGSOFT FSE (2009)
16. Drummond, N., Rector, A.L., Stevens, R., Moulton, G., Horridge, M., Wang, H.,

Seidenberg, J.: Putting OWL in order: Patterns for sequences in OWL. In: Pro-
ceedings of OWLED (2006)

17. Euzenat, J., Shvaiko, P.: Ontology matching. Springer-Verlag, Heidelberg (DE)
(2007)

18. Falk Howar, Maik Merten, J.N., Steffen, B.: Introduction to automata learning.
In: Bernardo, M., Issarny, V. (eds.) SFM-11: 11th International School on Formal
Methods for the Design of Computer, Communication and Software Systems –
Connectors for Eternal Networked Software Systems. Springer Verlag (2011)

19. Flores-Cortés, C.A., Blair, G.S., Grace, P.: An adaptive middleware to overcome
service discovery heterogeneity in mobile ad hoc environments. IEEE Distributed
Systems Online 8(7) (2007)

20. Foster, H., Uchitel, S., Magee, J., Kramer, J.: LTSA-WS: a tool for model-based
verification of web service compositions and choreography. In: Proceedings of ICSE
(2006)

21. Grace, P., Blair, G.S., Samuel, S.: ReMMoC: A reflective middleware to support
mobile client interoperability. In: Proceedings of CoopIS/DOA/ODBASE (2003)

22. Grace, P., Georgantas, N., Bennaceur, A., Blair, G., Chauvel, F., Issarny, V.,
Paolucci, M., Saadi, R., Souville, B., Sykes, D.: The connect architecture. In:
Bernardo, M., Issarny, V. (eds.) SFM-11: 11th International School on Formal
Methods for the Design of Computer, Communication and Software Systems –
Connectors for Eternal Networked Software Systems. Springer Verlag (2011)

23. Green, P., J.: Protocol conversion. IEEE Transactions on Communications 34(3)
(Mar 1986)

24. Hoare, C.A.R.: Communicating sequential processes. Communications of the ACM
(CACM) 21(8) (1978)

25. Howar, F., Jonsson, B., Merten, M., Steffen, B., Cassel, S.: On handling data in
automata learning - considerations from the connect perspective. In: Proceedings
of ISoLA (2) (2010)

Middleware-layer Connector Synthesis 39

26. Inverardi, P., Spalazzese, R., Tivoli, M.: Application-layer connector synthesis. In:
Bernardo, M., Issarny, V. (eds.) SFM-11: 11th International School on Formal
Methods for the Design of Computer, Communication and Software Systems –
Connectors for Eternal Networked Software Systems. Springer Verlag (2011)

27. Issarny, V., Caporuscio, M., Georgantas, N.: A Perspective on the Future of
Middleware-based Software Engineering. In: Proceedings of FOSE 2007 (2007)

28. Issarny, V., Steffen, B., Jonsson, B., Blair, G., Grace, P., Kwiatkowska, M., Cali-
nescu, R., Inverardi, P., Tivoli, M., Bertolino, A., Sabetta, A.: CONNECT Chal-
lenges: Towards Emergent Connectors for Eternal Networked Systems. In: Pro-
ceedings of the 14th ICECCS (2009)

29. Kumar, R., Nelvagal, S., Marcus, S.I.: A discrete event systems approach for pro-
tocol conversion. Discrete Event Dynamic Systems 7 (June 1997)

30. Lam, S.S.: Protocol conversion. IEEE Transaction Software Engineering 14(9)
(1988)

31. Limam, N., Ziembicki, J., Ahmed, R., Iraqi, Y., Li, T., Boutaba, R., Cuervo, F.:
Osda: Open service discovery architecture for efficient cross-domain service provi-
sioning. Computer Communications 30(3) (2007)

32. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. on Prog.
Lang. and Syst. (1994)

33. Magee, J., Kramer, J.: Concurrency : State models and Java programs. Hoboken
(N.J.) : Wiley (2006)

34. Mehta, N.R., Medvidovic, N., Phadke, S.: Towards a taxonomy of software con-
nectors. In: Proceedings of ICSE (2000)

35. Menge, F.: Enterprise Service Bus. In: Free and open source software conference
(2007)

36. Nakazawa, J., Tokuda, H., Edwards, W.K., Ramachandran, U.: A bridging frame-
work for universal interoperability in pervasive systems. In: Proceedings of ICDCS
(2006)

37. Nezhad, H.R.M., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-
automated adaptation of service interactions. In: Proceedings of WWW (2007)

38. Nitto, E.D., Rosenblum, D.S.: Exploiting adls to specify architectural styles in-
duced by middleware infrastructures. In: Proceedings of ICSE (1999)

39. Okumura, K.: A formal protocol conversion method. In: Proceedings of SIGCOMM
(1986)

40. (OMG): COM/CORBA interworking specification Part A & B (1997)
41. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Semantic matching of web

services capabilities. In: Proceedings of ISWC (2002)
42. Ponnekanti, S., Fox, A.: Interoperability among independently evolving Web ser-

vices. In: Proceedings of Middleware (2004)
43. Raverdy, P.G., Issarny, V., Chibout, R., de La Chapelle, A.: A multi-protocol

approach to service discovery and access in pervasive environments. In: Proceedings
of MobiQuitous. IEEE Computer Society (2006)

44. Román, M., Campbell, R.H., Kon, F.: Reflective middleware: From your desk to
your hand. IEEE Distributed Systems Online 2(5) (2001)

45. Spalazzese, R., Inverardi, P.: Mediating Connector Patterns for Components In-
teroperability. In: Proceedings of ECSA (2010)

46. Spalazzese, R., Inverardi, P., Issarny, V.: Towards a formalization of mediating
connectors for on the fly interoperability. In: Proceedings of WICSA/ECSA (2009)

47. Spitznagel, B., Garlan, D.: A compositional formalization of connector wrappers.
In: Proceedings of ICSE (2003)

40 Issarny, Bennaceur, and Bromberg

48. Stollberg, M., Cimpian, E., Mocan, A., Fensel, D.: A semantic web mediation
architecture. In: Proceedings of CSWWS (2006)

49. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering. Data & Knowl-
edge Engineering (1998)

50. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software architecture : foundations,
theory, and practice. Hoboken (N.J.) : Wiley (2009)

51. Vacuĺın, R., Sycara, K.P.: Towards automatic mediation of OWL-S process models.
In: Proceedings of ICWS (2007)

52. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM
Trans. Program. Lang. Syst. 19(2) (1997)

53. Zhu, F., Mutka, M., Ni, L.: Service discovery in pervasive computing environments.
Pervasive Computing (2005)

