On the local minimizers of the Mahler volume

Abstract : We focus on the analysis of local minimizers of the Mahler volume, that is to say the local solutions to the problem $$\min\{ M(K):=|K||K^\circ|\;/\;K\subset\R^d\textrm{ open and convex}, K=-K\}, $$ where $K^\circ:=\{\xi\in\R^d ; \forall x\in K, x\cdot\xi<1\}$ is the polar body of $K$, and $|\cdot|$ denotes the volume in $\R^d$. According to a famous conjecture of Mahler the cube is expected to be a global minimizer for this problem. We express the Mahler volume in terms of the support functional of the convex body, which allows us to compute first and second derivatives, and leads to a concavity property of the functional. As a consequence, we prove first that any local minimizer has a Gauss curvature that vanishes at any point where it is defined. Going more deeply into the analysis in the two-dimensional case, we also prove that any local minimizer must be a parallelogram. We thereby retrieve and improve an original result of Mahler, who showed that parallelograms are global minimizers in dimension 2, and also the case of equality of Reisner, who proved that they are the only global minimizers.
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

Contributeur : Jimmy Lamboley <>
Soumis le : vendredi 26 septembre 2014 - 11:48:37
Dernière modification le : mercredi 19 septembre 2018 - 14:40:37
Document(s) archivé(s) le : vendredi 14 avril 2017 - 16:42:03


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00586882, version 2
  • ARXIV : 1104.3663


Evans Harrell, Antoine Henrot, Jimmy Lamboley. On the local minimizers of the Mahler volume. Journal of Convex Analysis, Heldermann, 2015, 22 (3), pp.809-825. 〈inria-00586882v2〉



Consultations de la notice


Téléchargements de fichiers