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Abstract: Experimental analysis of evolutionary algorithms usually aims at tuning
the parameter setting or at improving knowledge about internal mechanisms (operators
efficiency, genetic material distribution, or diversity management for instance). This
crucial step relies on the analysis of a huge amount of multidimensional data, includ-
ing numeric and symbolic data. Usual features of existing EA visualisation systems
consist in visualising time- or generation-dependent curves (fitness, diversity, or other
statistics). But when dealing with detailed genomic information, the task becomes
more difficult, as a convenient visualisation strongly depends on the considered fitness
landscape. In this latter case the raw data are usually sets of successive populations of
points of a complex multidimensional space. The purpose of this paper is to evaluate
the potential interest of some recent visual analytics tools for navigating in complex
sets of EA data, and to sketch future developements of visual analytics tools adapted to
the needs of EA experimental analysis.

Key-words: Optimisation, Artificial Evolution, Genetic algorithms, Visual Analytics,
Experimental analysis of algorithms, parameter tuning, fitness landscape visualisation



Visualisation interactive et analyse expérimentale

d’algorithmes évolutionnaires

Résumé : L’analyse expérimentale des algorithmes évolutionnaires nécessite d’appré-
hender une grande quantité de données multidimensionelles, incluant le plus souvent
des données numériques et symboliques. Il est extrêmement difficile de naviguer dans
un tel ensemble de données, et plus encore d’en tirer des conclusions permettant par
exemple de mesurer l’efficacité des différents opérateurs ou de régler les paramètres
de l’algorithme. Les outils de visualisation qui accompagnent les différentes boîtes à
outils d’algorithmes évolutionnaires donnent accès la plupart du temps à des courbes
d’évolution en fonction du temps ou de la génération (fonction de fitness, indicateurs
de diversité, ou autres statistiques). En ce qui concerne les informations génomiques,
la tâche devient beaucoup plus ardue, car la visualisation dépend fortement du paysage
de recherche considéré. Dans ce dernier cas les informations brutes se présentent sous
forme d’une succession de populations de points définis dans un espace complexe et
multidimensionel. Le but du travail présenté ici est d’évaluer le potentiel des outils
génériques de visualisation dans le cadre de l’analyse d’algorithmes évolutionnaires,
et de proposer différentes pistes de développement pour mieux adapter ces outils aux
besoins de la communauté évolutionnaire.

Mots-clés : Optimisation, Evolution artificielle, Algorithmes génétiques, Analyse
expérimentale d’algorithmes, Visualisation, Réglage de paramètres, Visualisation de
paysages d’optimisation
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1 Introduction

The crucial problem of parameter tuning and the huge amount of information pro-
duced by Evolution Algorithms (EAs) has led authors to propose various visualisation
software adapted to on-line visualisation, that displays fitness curves, convergence di-
agrams, and some statistics. The important question is to be able to delve into what
happens internally during or after the run of an EA. According to Shine and Eick [1]
visualization of GAs can be helpful in analyzing the extent to which a GA explores the
search space, analyzing its convergence behavior, enabling the user to get some feeling
for the fitness landscape and the dynamics of the evolutionary process, and fine-tuning
the GA.

The methods proposed are commonly split into two types of visualisation tools:
on-line tools, that display a set of monitoring curves during an EA run (fitness of the
best individual, statistics, diversity, for instance), and off-line tools, that do a “post-
mortem” analysis and provide more sophisticated analyses, including important utili-
ties like visualisation of genomes, and fitness landscapes analysis tools using 2D, 3D
plots, density images, graphs, and providing various other representations.

When reviewing the literature on this subject or experimenting existing software
and toolboxes, a series of important issues seems to remain difficult:

• How to visualise an individual. This task is particularly complex when the search
space is large and multidimensional, when the genome combines symbolic, and
numeric (discrete and/or continuous) values. The particular case of genetic pro-
gramming has also been considered[2]. Proposed solution are usually problem
dependent, and may sometimes necessitate the display of phenotypes (signals,
images, sounds, graphs, networks, etc ... ).

• How to visualise a population, i.e. a set of multidimensional points that may be
large. Being able to efficiently visualise fitness landscapes is still a challenge,
for which approaches like fitness-distance correlations are only a partial answer.

• How to visualise the history and evolutionary mechanisms. This issue is impor-
tant, as visualising various statistics about an evolving population may not be
enough to understand some of the complex mechanisms of EAs, like the action
of operators. Being able to follow the transmission of genetic material inside a
population has been partially addressed by schemata analysis, there is a strong
need however when dealing with continuous landscapes.

• How to visualise the result in non-standard EAs. A good example of this issue
is the case of multi-objective EAs, as the growing size of the problem EA are
able to solve lead to outputs made of large Pareto datasets with many objectives.
There is a strong need of efficient visualisation tools, that may help to monitor
(on line or even interactively) multidimensional Pareto fronts [3].

In this paper, we investigate some recent tools developed by the visual analyt-
ics community, that may provide efficient and generic answers to the previous chal-
lenges. The paper is organised as follows. A short review of existing visualisation
systems for EAs is given in section 2. An analysis of population clouds using Scatter-
Dice/GraphDice is developed in section 3 for some classical test-functions. Tests are
based on the EASEA language[4]1. Then a genealogy analysis using GeneaQuilts is

1The software is available at http://sourceforge.net/projects/easea/
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presented in section 4. Section 5 will draw a conclusion and sketch future work we
intend to develop on this topic.

2 Related work

2.1 On-line visualisation

Almost every evolutionary software proposes nowaday its own on-line visualisation
facilities. It is often reduced to the visualisation of best fitness evolution along genera-
tions. We give below some examples that provide additional features.

Bedau and Bullock[5, 6] show the importance of tracking evolutionary activity via
plots that visualise the history at different levels. For instance, genotype’s activity cor-
responds to the frequence of a given genotype in a population, which appears, increases
or decreases along generations, forming what they call “waves”.

Pohlheim[7, 8] proposed in 1999 a visualisation adapted to the Genetic and Evolu-
tionary Algorithm Toolbox for Matlab - GEATbx[9]. His system allows a visualisation
of the data in various ways, and gives for instance the current state of a population (one
generation), visualises a run (all the generations), or different runs for comparisons.
Additionally he copes with the problem of visualising high-dimensional data using
multidimensional scaling (reduction to a 2D visualisation that preserves distances rela-
tionships), and uses a 2D representation to show paths followed by the best individual
of every generation.

Kerren and Egger in 2005 [10] developed a java-based on-line visualization tool,
EAVis, in which it is possible to embed an application-dependent Phenotype View.

Collins in 2003 [11] provided a survey chapter on this topic and identified some
directions for future research. His main conclusion concerns the strong need for flex-
ible visualisation environments, as he considered that current solutions were still too
problem dependent.

2.2 Off-line visualisation

Off-line visualization systems allow displaying more data, including multidimensional
data, which is one of the important issues in current visualisation systems. Spears [12]
provided in 1999 a brief overview of multidimensional visualization techniques for
visualizing EAs, such as the use of color, glyphs, parallel coordinates or coordinates
projections. For discrete data, Routen in 1994 [13] suggested adopting a modified Hin-
ton diagram2 in which a rectangle represents a chromosome and its size is determined
by the fitness of the chromosome. Let us give below a list of some off-line systems:

• William Shine and Christoph Eick[1] describe the features of a GA-visualization
environment that uses quadcodes to generate search space coverage maps, that
employs 2D-distance maps to visualize convergence, and uses contour maps to
visualize fitness.

• The VIS system [14] proposed in 1999 allows a navigation at various levels of
detail, and manages transitions between related data levels. The visualisation
of the most detailed level is based on ad-hoc representations (bar codes, colors,

2A Hinton diagram provides a qualitative display of the values in a matrix. Each value is represented by
a square whose size is related to the magnitude, and whose color indicates the sign.

RR n° 7605
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alleles frequencies) but does not allow visualising multidimensional continuous
genomes.

• Emma Hart [15] proposed GAVEL in 2001, an off-line visualisation system
adapted to generational GAs, that provides a means to understand how crossover
and mutation operations assemble the optimal solution, and a way to trace the
history of user-selected sets of allele. It allows a display of the complete history
across all generations of chromosomes, individual genes, and schemas.

• Marian Mach [16] presented in 2002 a simple and interactive “post-mortem”
GA visualising tool focussed on the visualisation of multidimensional data via
1D projections.

Annie Wu [17], who developed the VIS system, gave the following list of desirable
tasks for visualisation systems: (a) to examine individuals and their encodings in detail,
(b) to trace the source and survival of building blocks or partial solutions, (c) to trace
family trees to examine the effects of genetic operators, (d) to examine populations for
convergence, speciation, etc, (e) to trace gross population statistics and trends to move
freely in time and through populations.

The genome representation issue, item (a), is perhaps the most complex one, and as
we have seen above various solutions have been proposed, depending if we are dealing
with continuous or discrete genomes. For Genetic Programming, the question is even
more complex: a solution proposed by Jason Daida [2] in 2005 consists in visualizing
big tree structures as large sized graphs.

The issue addressed by the GAVEL system, that appears as very challenging in
off-line systems and that is mentioned by Annie Wu as items (c) and (d), is to be able
to trace history of individuals. Spears [12] mentioned also that being able to track the
origin of the fittest individual per generation is a very important issue for parameters
tuning.

The question of family trees visualisation has more recently been considered by
Zbigniew Walczak in 2005 in a short chapter [18] where he proposed to visualise evo-
lutionary processes using graph drawing software.

2.3 Visualisation and interaction

There also exist attemps to use visual analytics in interactive evolution [19, 20] that
has been considered as a way to reduce user fatigue. In [19], the system uses visual
analytics to display past searched individuals to the user, allowing him to decide where
to search. Hayashida and Takagi have shown that such an augmented interaction allow
a faster convergence, and expect this method to be powerful in difficult IEC tasks. Llora
& al, [20] propose to use a simple visual analytics tool to mine various models of user
preferences, allowing them to generate what they call educated guesses or promising
solutions.

3 Analysing populations clouds using ScatterDice/GraphDice

Visual analytics, says Wikipedia, is "the science of analytical reasoning facilitated by
visual interactive interfaces." This multidisciplinary field integrates various sophisti-
cated computational tools with innovative interactive techniques and visual represen-
tations to facilitate human interpretation, or in other terms, the sense-making process

RR n° 7605
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from raw data. Some tools developed in this field could be very useful for the EA com-
munity. We present in this section and the next one, two visualisation tools that seem
to answer in a generic way to some needs identified in the previous section.

ScatterDice[21] is a multidimensional visual exploration tool, that allows the user
to navigate in a multidimensional set via simple 2D projections, organised as scatterplot
matrices, visual coherence between various projections is based on animated 3D transi-
tions. A scatterplot matrix presents an overview of the possible configurations, thumb-
nails of the scatterplots, and support for interactive navigation in the multidimensional
space. Various queries can be built using bounding volumes in the dataset, sculpting
the query from different viewpoints to become more and more refined. Furthermore,
the dimensions in the navigation space can be reordered, manually or automatically, to
highlight salient correlations and differences among them3.

A recent evolution of ScatterDice using the same principles but with many addi-
tional features is GraphDice[22]. It allows reading the same type of data (.csv files),
and other more sophisticated formats, as it also embeds graph visualisation utilities4.

This tool can be used to visualise data collected during the run of an EA. At each
generation, the composition of the current population can be written in a “.csv” file as
on figure 1, forming what can be called a “cloud” of successive populations. This cloud
of multidimensional points is visualised using ScatterDice or GraphDice, to produce
various, sometimes unusual, viewpoints.

Generation;Fitness;x[0];sigma[0];x[1];sigma[1]

INT;DOUBLE;DOUBLE;DOUBLE;DOUBLE;DOUBLE

0;3.75447;-0.12508;0.195626;0.524069;0.255402

0;1.17484;-0.573358;0.142053;0.924887;0.392851

0;2.28066;-0.533583;0.183641;0.546523;0.461643

0;1.92319;-0.70052;0.338246;0.582533;0.406443

0;2.75539;0.784538;0.182157;-0.940648;0.383136

0;3.08894;-0.770051;0.190012;-0.840338;0.359992

0;2.30766;0.380979;0.124581;0.0379446;0.469388

0;3.30957;-0.704403;0.453222;0.208484;0.182612

...

Figure 1: A simple .csv file collected during a run (minimisation of the 2D Weierstrass
function H = 0.2)

The test functions used in the experiments below are the following:

• Weierstrass functions (see figure 2) defined in a space of dimension 2, of Hölder
exponents H = 0.2 (very irregular) and H = 0.9 (more regular).

f(x, y) =

+∞∑

n=−∞

2−nH(1 − cos 2nx) +
+∞∑

n=−∞

2−nH(1 − cos 2ny)

• Rosenbrock function5 in a space of dimension 10.

f(x1, ..., x10) =

9∑

n=1

100(x2
i
− xi+1)

2 + (1 − xi)
2

3A demo of ScatterDice can be launched from http://www.aviz.fr/∼fekete/scatterdice/,
it accepts standard .csv files (although it may be necessary to add a second line after the header giving the
data type for each column - INT, STR, REAL, etc).

4 A demo of ScatterDice is also accessible at http://www.aviz.fr/graphdice/
5See for instance http://en.wikipedia.org/wiki/Rosenbrock_function
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H = 0.2 (very irregular) H = 0.9 (more regular).

Figure 2: 2D Weierstrass functions with Hölder exponent H .

The genetic engine is a simple generational algorithm on Rn using tournament
selection, geometric (barycentric) crossover and log-normal auto-adaptative mutation.
Additional dimensions are thus considered in the search space, the σi values, that rep-
resent the mutation radius for each coordinate xi. The population size is 100 and the
algorithm runs for 100 generations. This genetic engine is available in the sample
programs (weierstrass.ez) distributed with the EASEA software.

A visualisation of the population cloud for the 2D Weierstrass function of dimen-
sion 0.2 is given on figure 3. The scatterplot matrix on the left of the figure, gives an
overview of the possible visualisations. The columns and lines of this matrix can be
dragged and dropped as wished by the user, a default order is proposed, based on an
algorithm that reduces “clutter”[22]. On the right, a detailed view is given, on which
some queries have been visualised: in red, the points corresponding to the 10 first gen-
erations of the run, in yellow, the 10 last generations, and in green, the best fitness
points. The queries are organised as layers, the “Query layers” window gives the de-
tails of the three queries, with some additional measurements (percentage of selected
points, and percentage of selected edges if a graph is visualised : GraphDice actually
considers a set of points as a degenerate graph, made of a collection of nodes with no
edges). Bottom left, a “Selection History” window show how the queries have been
sculpted: queries 1 and 2 have been activated on the Generation versus Generation
view, i.e. the top left plot of the scatterplot matrix, while query 3 has been made on the
fitness versus generation plot. On the extreme rigth of the window, a toolbar proposes
various visualisation options (the “Show” window), for instance “Grid” activates a grid
on the dataset, “Labels” allow to display attributes attached to a point. It is thus for
instance possible to identify different runs of an EA using a label, and use this option
to separate the data when needed. “Hull” displays a convex hull for each query, and
“Zoom” activates an automatic zoom focussed on the selected data.

The Fitness versus Generation plot, that displays the whole set of individuals gen-
erated along the evolution, provides additional information about the distribution of
successive populations, for comparison figure 4 gives the classical fitness evolution
curves. When observed from a different viewpoint, like in figure 5, it can be noticed
that the population diversity decreases slowly, and converge toward a point of the 2D
plane, while stabilising on some mutation parameters. The first generations (red points
of the query 1) are spread in a rather uniform way on the whole search space, while
the last ones (yellow points) are concentrated in the areas of best fitness (green points).

RR n° 7605
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Figure 3: 2D Weierstrass function of Hölder exponent 0.2. Scatterplot and Fitness versus generation view. Red points correspond to the first 10
generations, yellow points, to the 10 last ones, and green points, to the best fitness areas.
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Figure 4: 2D Weierstrass function H = 0.2, classical best fitness, average fitness
curves

A green point appears rather early (see generation 12 on the Fitness versus Genera-
tion plot), but green points start to multiplicate rather late (from generation 68) in the
evolution.

Figure 5: 2D Weierstrass function H = 0.2. Left, projection on the 2D plane (x0, x1).
Right, parameters σ0 and σ1. Points in red belong to generations 0 to 10, points in
yellow to 90 to 100.

Figure 6 gives the same view as figure 3 but for a 2D Weierstrass function of di-
mension 0.9. This function is much more regular than the previous one. Visually, it
seems obvious that the population is able to converge more rapidly.

Figure 7 gives an overview of the visualisation window for a dimension 10 space.
Once again, as the function is more regular, the population seems to converge rapidly,
even if it uses the same parameters as for the Weierstrass functions, in a search space
of larger dimension.

RR n° 7605
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4 Analysing EA genealogies using GeneaQuilts

Another challenge for EA visualisation systems is to provide a versatile visualisation
of EAs history, and of the behaviour of genetic operators. We show below that visuali-
sation systems developed for genealogist have interesting features that can be adapted
to the needs of EAs visualisation.

Genealogy research actually relies more and more on sophisticated computer sys-
tems, as current genealogies databases can easily reach tens of thousands of nodes. For
visualisation, node-link diagrams are the most widespread representations, but it has
been shown such diagrams quickly become unreadable as graph size grows. More
scalable visualisation solutions, based on Quilts representation, have been recently
proposed[23]. Quilts visualisation displays layered graphs in a more compact way,
as it eliminate the confusing link crossings of node-links diagrams.

This visualisation takes the form of a diagonally-filled matrix, where rows are indi-
viduals and columns are nuclear families. Figure 8 gives an example of a small family
quilt display. The Simpson family is organised in 3 generations, from left (the oldest)
to right (the youngest). Columns correspond to families and are identified by an “F”
icon, in which round and square dots respectively correspond to male and female. For
instance, Homer and Marge are the parents of Bart, Maggie and Lisa (rightmost “F”
column). Then, left to Homer and Marge, the two columns allow knowing who are
their parents and siblings.

The GeneaQuilts system includes an overview, a timeline, search and filtering com-
ponents, and a new interaction technique called Bring & Slide that allows fluid naviga-
tion in very large genealogies.6

Figure 8: GeneaQuilts Visualization of the Simpson Family (from [23])

Experiments below have been performed on the same set of test functions as in
section 3. Data are collected as text and transformed into ged format7 via a simple
parse routine, see figure 9.

Figure 10 shows the GeneaQuilts window: on the top is represented a time-line
view, on the top right an overview of the whole genealogy, and on the bottom right
details about a selected individual. The main window gives a zoom, corresponding to
the small blue box of the overview (up right), and the ancestors of a selected individual
are tracked in red on the main window and on the overview. It is also possible to

6A demo is available on http://www.aviz.fr/geneaquilts/
7See http://en.wikipedia.org/wiki/GEDCOM for details about this format.
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Individu : NoGen 1 -- id 21 -- fitness 95

Individu : NoGen 1 -- id 22 -- fitness 310

Individu : NoGen 1 -- id 23 -- fitness 270

Individu : NoGen 1 -- id 24 -- fitness 103

Individu : NoGen 1 -- id 25 -- fitness 305

Individu : NoGen 1 -- id 26 -- fitness 290

Individu : NoGen 1 -- id 27 -- fitness 95

Individu : NoGen 1 -- id 28 -- fitness 282

Individu : NoGen 1 -- id 29 -- fitness 275

Individu : NoGen 1 -- id 30 -- fitness 95

Individu : NoGen 1 -- id 31 -- fitness 323

Individu : NoGen 1 -- id 32 -- fitness 326

Individu : NoGen 1 -- id 33 -- fitness 95

Individu : NoGen 1 -- id 34 -- fitness 196

Individu : NoGen 1 -- id 35 -- fitness 65

Cross : NoGen 2 -- parent1 32 -- parent2 32 -- son 36

Cross : NoGen 2 -- parent1 23 -- parent2 32 -- son 37

Cross : NoGen 2 -- parent1 32 -- parent2 32 -- son 38

Cross : NoGen 2 -- parent1 32 -- parent2 13 -- son 39

Cross : NoGen 2 -- parent1 32 -- parent2 32 -- son 40

Cross : NoGen 2 -- parent1 32 -- parent2 32 -- son 41

Mutation : NoGen 2 -- id_parent 32 -- id_mute 42

Cross : NoGen 2 -- parent1 32 -- parent2 35 -- son 43

Cross : NoGen 2 -- parent1 33 -- parent2 7 -- son 44

Cross : NoGen 2 -- parent1 32 -- parent2 17 -- son 45

Cross : NoGen 2 -- parent1 2 -- parent2 30 -- son 46

Cross : NoGen 2 -- parent1 32 -- parent2 32 -- son 47

Cross : NoGen 2 -- parent1 35 -- parent2 17 -- son 48

Cross : NoGen 2 -- parent1 32 -- parent2 32 -- son 49

Individu : NoGen 2 -- id 36 -- fitness 326

Individu : NoGen 2 -- id 37 -- fitness 256

Individu : NoGen 2 -- id 38 -- fitness 326

...

0 HEAD

1 SOUR ArtiFract

1 FILE genealogie.ged

1 CHAR ANSI

0 @I1@ INDI

1 NAME FIRST_GEN_id1_gen0

1 FITNESS 95

1 GENERATION 0

1 BIRT

2 DATE 1 JAN 0

1 DEAT

2 DATE 1 JUN 1

1 FAMS @F1@

1 FAMS @F1@

1 FAMS @F3@

1 FAMS @F4@

1 FAMS @F5@

1 FAMS @F1@

1 FAMS @F1@

1 FAMS @F7@

1 FAMS @F8@

1 FAMS @F1@

1 FAMS @F1@

1 FAMS @F10@

1 FAMS @F1@

1 FAMS @F1@

0 @I2@ INDI

1 NAME FIRST_GEN_id2_gen0

1 FITNESS 178

1 GENERATION 0

1 BIRT

...

Figure 9: Geneational data: simple text data collected during the run (left) and corre-
sponding ged format (right)

track all the offsprings of an individual (figure 10), or to visualise common branches of
two lineages (ancestors or offsprings, see figure 11). In order to identify the action of
operators, we took as convention that female individuals are created by mutation while
male ones are the result of a crossover. We thus have a mean to track the efficiency of
operators all along a lineage. There is no limitation of the number of genders in the
system, a visualisation of more than two operators is thus possible.

Experiments also show that the genealogy expands in different ways depending on
the irregularity of the fitness function. Figure 12 shows two genealogy profiles for two
Hölder exponents of the Weierstrass function. The most regular function (H = 0.9)
has a genealogy that keeps longer alife some individuals, producing a structure with
longer inter-generational mixture than for the more irregular function (H = 0.2). We
conjecture this is linked to the number and size of basins of attraction of local optima.

RR n° 7605
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Figure 11: Rosenbrock function in dimension 10 (50 individuals during 50 generations). Track of the common ancestors of two individuals: continuous
red and blue lineages until the first common ancestor from which the lineage is identified with a red-blue dotted line). A filtering has been applied, to
magnify the selected lineages.
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Visual analytics and experimental analysis of EAs 16

H = 0.2

H = 0.9

Figure 12: Profile of a genealogy of 20 individuals during 20 generations for Weier-
strass functions of exponent 0.2 (top) and 0.9 (bottom). The Lineage of a good individ-
ual of the last population is highlighted in red.
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5 Conclusion and future work

We have shown above that two visualisation software of the infovis community, GraphDice
and GeneaQuilts, can easily be used for visual inspection of EA behaviour. First exper-
iments have been performed on toy problems, but let us identify features that may shed
new light on the experimental analysis of EAs. GraphDice for instance allows a rapid
visual inspection of exploration capability and population diversity, and GeneaQuilts
provides a visualisation of the impact of operators. GeneaQuilts may also allow visu-
alising genetic drift effects, as it is able to track the lineage of two individuals and to
identify their common ancestors.

This preliminary study allows identifying a set of desirable features to adapt these
general visualisation tools to the specific needs of EA analysis. The following issues
will guide future developments of GeneaQuilts and GraphDice versions adapted to
EAs:

• Tests have been performed on relatively small data sets (up to 100x100 individ-
uals in 10 dimensional space). The scalability issue will be tested more exten-
sively.

• Various usual statistics (per generation, per fitness level) and query-based statis-
tics will be implemented, including comparison of distributions (p-values).

• For GeneaQuilts, original features like lineage statistics (which may for instance
provide various numerical measurements for the efficiency of genetic operators)
or similarity measurement by identification of common ancestors will be consid-
ered.

• GraphDice, that also allow to visualise graphs, will be evaluated for the geneal-
ogy visualisation task.

• On-line visualisation issues will also be considered.

Acknowledgments: The authors thank Nicolas Coiffier, student of the french EN-

STA engineering school, for his contribution to the extraction of EA data for quilt

visualisation.
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