L. Blin, S. Dolev, M. Gradinariu-potop-butucaru, and S. Rovedakis, Fast self-stabilizing minimum spanning tree construction -using compact nearest common ancestor labeling scheme, DISC, pp.480-494, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00879578

L. Blin, M. Potop-butucaru, S. Rovedakis, and S. Tixeuil, A new selfstabilizing minimum spanning tree construction with loop-free property, DISC, pp.407-422, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00384041

W. Edsger and . Dijkstra, Self-stabilizing systems in spite of distributed control, Commun. ACM, vol.17, issue.11, pp.643-644, 1974.

]. S. Dol00 and . Dolev, Self-Stabilization, 2000.

R. G. Gallager, P. A. Humblet, and P. M. Spira, A Distributed Algorithm for Minimum-Weight Spanning Trees, ACM Transactions on Programming Languages and Systems, vol.5, issue.1, pp.66-77, 1983.
DOI : 10.1145/357195.357200

K. S. Sandeep, P. K. Gupta, and . Srimani, Self-stabilizing multicast protocols for ad hoc networks, J. Parallel Distrib. Comput, vol.63, issue.1, pp.87-96, 2003.

L. Higham and Z. Liang, Self-stabilizing Minimum Spanning Tree Construction on Message-Passing Networks, DISC, pp.194-208, 2001.
DOI : 10.1007/3-540-45414-4_14

D. Harel and R. E. Tarjan, Fast Algorithms for Finding Nearest Common Ancestors, SIAM Journal on Computing, vol.13, issue.2, pp.338-355, 1984.
DOI : 10.1137/0213024

D. D. Sleator and R. E. Tarjan, A data structure for dynamic trees, Proceedings of the thirteenth annual ACM symposium on Theory of computing , STOC '81, pp.362-391, 1983.
DOI : 10.1145/800076.802464