J. Abernethy, F. Bach, T. Evgeniou, and J. P. Vert, A new approach to collaborative filtering: Operator estimation with spectral regularization, Journal of Machine Learning Research, vol.10, pp.803-826, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00250231

D. Alpay, Algorithme de Schur, espacesàespacesà noyau reproduisant et théorie des systèmes. Panoramas et Synthèses, 1998.

. Aronszajn, Theory of reproducing kernels. Transactions of the, pp.337-404, 1950.

L. Breiman and J. Friedman, Predicting Multivariate Responses in Multiple Linear Regression, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.59, issue.1, pp.3-54, 1997.
DOI : 10.1111/1467-9868.00054

A. Caponnetto and E. Vito, Optimal Rates for the Regularized Least-Squares Algorithm, Foundations of Computational Mathematics, vol.7, issue.3, pp.331-368, 2007.
DOI : 10.1007/s10208-006-0196-8

A. Caponnetto, C. A. Micchelli, M. Pontil, and Y. Ying, Universal multi-task kernels, Journal of Machine Learning Research, vol.68, pp.1615-1646, 2008.

C. Carmeli, E. D. Vito, and A. Toigo, VECTOR VALUED REPRODUCING KERNEL HILBERT SPACES OF INTEGRABLE FUNCTIONS AND MERCER THEOREM, Analysis and Applications, vol.04, issue.04, pp.377-408, 2006.
DOI : 10.1142/S0219530506000838

C. Carmeli, E. D. Vito, and A. Toigo, VECTOR VALUED REPRODUCING KERNEL HILBERT SPACES AND UNIVERSALITY, Analysis and Applications, vol.08, issue.01, pp.19-61, 2010.
DOI : 10.1142/S0219530510001503

H. Dym, J contractive matrix functions, reproducing kernel spaces and interpolation, CBMS Lecture Notes. Am. Math. Soc, vol.71, 1989.
DOI : 10.1090/cbms/071

T. Evgeniou, C. A. Micchelli, and M. Pontil, Learning multiple tasks with kernel methods, Journal of Machine Learning Research, vol.6, pp.615-637, 2005.

F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis, 2006.

M. H. Quang, S. H. Kang, and T. M. Le, Image and Video Colorization Using Vector-Valued Reproducing Kernel Hilbert Spaces, Journal of Mathematical Imaging and Vision, vol.15, issue.5, pp.49-65, 2010.
DOI : 10.1007/s10851-010-0192-8

D. R. Hoover, J. A. Rice, C. O. Wu, and L. P. Yang, Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data, Biometrika, vol.85, issue.4, pp.809-822, 1998.
DOI : 10.1093/biomet/85.4.809

H. Kadri, E. Duflos, P. Preux, S. Canu, and M. Davy, Nonlinear functional regression: a functional rkhs approach, Proceedings of The Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS) 2010, JMLR: W&CP 9, pp.111-125, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00510411

C. A. Micchelli and M. Pontil, On Learning Vector-Valued Functions, Neural Computation, vol.1, issue.1, pp.177-204, 2005.
DOI : 10.1109/34.735807

C. A. Micchelli and M. Pontil, Kernels for multi-task learning, Advances in Neural Information Processing Systems, pp.921-928, 2005.

C. S. Ong, A. J. Smola, and R. C. Williamson, Learning the kernel with hyperkernels, Journal of Machine Learning Research, vol.6, pp.1043-1071, 2005.

L. Prchal and P. Sarda, Spline estimator for the functional linear regression with functional response, 2007.

J. O. Ramsay and B. W. Silverman, Applied Functional Data Analysis, 2002.

J. O. Ramsay and B. W. Silverman, Functional Data Analysis, 2005.

J. O. Ramsay, G. Hooker, and S. Graves, Functional Data Analysis with R and Matlab, 2009.
DOI : 10.1007/978-0-387-98185-7

M. Reisert and H. Burkhardt, Learning equivariant functions with matrix valued kernels, Journal of Machine Learning Research, vol.8, pp.385-408, 2007.

B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, 2002.

L. Schwartz, Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants) Journal d'Analyse Mathématique, pp.115-256, 1964.
DOI : 10.1007/bf02786620

T. Simila and J. Tikka, Input selection and shrinkage in multiresponse linear regression, Computational Statistics & Data Analysis, vol.52, issue.1, pp.406-422, 2007.
DOI : 10.1016/j.csda.2007.01.025

G. Wahba, Multivariate function and operator estimation, based on smoothing splines and reproducing kernels, Nonlinear Modeling and Forecasting of Proc. of the Santa Fe Institute, pp.95-112, 1992.

X. Zhao, J. S. Marron, and M. T. Wells, The functional data analysis view of longitudinal data, Statistica Sinica, vol.14, pp.789-808, 2004.