N
N

N

HAL

open science

Well-posedness of the frequency permutation problem in
sparse filter estimation with lp minimization

Alexis Benichoux, Prasad Sudhakar, Rémi Gribonval

» To cite this version:

Alexis Benichoux, Prasad Sudhakar, Rémi Gribonval. Well-posedness of the frequency permutation
problem in sparse filter estimation with lp minimization. Signal Processing with Adaptive Sparse

Structured Representations, Jun 2011, Edinburgh, United Kingdom. inria-00587789

HAL Id: inria-00587789
https://inria.hal.science/inria-00587789

Submitted on 21 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/inria-00587789
https://hal.archives-ouvertes.fr

Well-posedness of the frequency permutation problem
In sparse filter estimation with, minimization
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lUniversité de Rennes | & IRISA UMR6074 2Centre de recherche INRIA
Campus de Beaulieu 35042 Rennes Cedex

Abstract—A well-known issue in blind convolutive source separation
is that the sources and filters are at best identifiable up to ararbitrary
scaling and permutation at each frequency bin. We propose t@xploit
the sparsity of the filters as a consistency measure for coraéing such
permutations. We show that the permutation is well-posed, p to a global
permutation, under appropriate sparsity hypotheses on thefilters. A
greedy combinatorial algorithm is proposed for permutation recovery. Its
empirical performance shows that the time-domain sparsityof the filters
allows to recover permutations much beyond theoretical prdictions.

Theorem 2 ([3]): (i) If 1 < Ao < L/2k, then||Aflo < ||Allo.
(ii) If |[Allo > ||Aljo, thenAg > &
For prime L, the results hold with. + 1 — 2k instead of .
The equality case implies that the filters are pathologicallated to
Dirac combs of stepk .

Il1. A COMBINATORIAL ALGORITHM

We perform minimisation iteratively by considering onecfuency
binl <w< é at a time and choosing a permutation (in a combi-
natorial fashion) that minimises th® norm locally, while keeping
the other bins fixed. To preservg; = a;;, the same permutation
is applied on the corresponding mirror frequenty- 1 — w. This

I. CONTEXT

Let z;[t] be M mixtures of N source signals;[t], resulting from
the convolution with a filtem;;[t] of length L such that:

N iterative procedure is repeated over all frequency bihgh&l/? norms
zilt]) =D (ai;*s)t], 1<i< M. (1) of the filters converges.
j=1 We conservatively consider the filters as successfully vereal

We consider the problem of estimating the matrix of filtesks= When the SNR of the permutation corrected time-domain ilter
(a:;) from the mixtures, without knowledge about the source§xceeds 200dB. Fig. 1 shows the phase transition diagrarfilter

A standard approach is to formulate the problem in the Fourigecovery using the proposed algorithm for the number of casir
domain: one needs to estimatg [w]. This suffers from a well known N = 4, number of channels/ = 3, length of individual filters
ambiguity : without further assumption on eithes; [t] or s,[t], one L = 1024 andp = 1. White indicates guaranteed success, black is
can at best hope to find an estimatidn= (a; ;) where for every guaranteed failure.

frequencyw < L we have
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with A; a scaling ambiguity anek, a permutation ambiguity. Several

ai,j[w] = Aj[wlaie,, ;) W],

methods [1] to exploit properties of eith& or A solve these. Our
focus here is on the use of the sparsity &fin the time domain
to find o1 ...01 € Gy, assuming the scaling € C is solved.

Of course we can at best hope to obtain uniqueness up to al globe 163

permutation of the columns oA. We exploit [2, Th.6.2a] the,
quasi-norm||A|[y = =, |ai;[t]]”, 0 < p < 1, as a consistency
measure to solve the permutations.

Il. THEORETICAL GUARANTEES

If the filters a;; have disjoint supports, without further sparsity Fig. 1.

hypothesis, we show that permutations can only increasg, therm.
Theorem 1 ([3]): Let I';; C {1,...,L} be the time domain

support of a;;. Suppose that for ali and ji1 # j» we have

[ij, NTij, = 0. Then for0 < p < 1 we have||A||Z < ||A|E.

To obtain uniqueness guarantees, we now introduce assumapin

the sparsityk := max; ; ||as,;]|o. We measure the permutation error
[1

for 0 <p <1 with
3)

For sparse filters, the true filters are the sparsest amonfijtett
incurring sufficiently few permutations. The skilled readall rightly
sense the role of th& Fourier-Dirac uncertainty principle [4] in the
following result.

Api= min max | {aing)l] - alelh, oy o
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Phase transition diagram for filter recovery @yminimisation.

The guarantees of Theorem 2 are delimited by the black line
in general, and the white line if. is prime. We observe a phase
transition close to the prime length case.
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