L. Adleman, A subexponential algorithm for the discrete logarithm problem with applications to cryptography, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979), pp.55-60, 1979.
DOI : 10.1109/SFCS.1979.2

]. E. Bac84 and . Bach, Discrete logarithms and factoring, 1984.

J. Buhler, H. W. Lenstra, and C. Pomerance, Factoring integers with the number field sieve, Lecture Notes in Mathematics, vol.32, issue.107, pp.50-94, 1993.
DOI : 10.1109/TIT.1986.1057137

P. [. Canfield, C. Erdös, and . Pomerance, On a problem of Oppenheim concerning ???factorisatio numerorum???, Journal of Number Theory, vol.17, issue.1, pp.1-28, 1983.
DOI : 10.1016/0022-314X(83)90002-1

H. Cohen and H. Lenstra, Heuristics on class groups of number fields. Number Theory Noordwijkerhout, pp.33-62, 1983.

]. H. Coh93 and . Cohen, A Course in Computational Algebraic Number Theory, 1993.

]. D. Cop93 and . Coppersmith, Modifications to the number field sieve, J. of Cryptology, vol.6, pp.169-180, 1993.

D. Coppersmith, Fast evaluation of logarithms in fields of characteristic two. Information Theory, IEEE Transactions on, vol.30, issue.4, pp.587-594, 2002.

D. Coppersmith, R. Odlyzko, and . Schroeppel, Discrete logarithms inGF(p), Algorithmica, vol.13, issue.1-4, pp.1-15, 1986.
DOI : 10.1007/BF01840433

A. Commeine and I. Semaev, An Algorithm to Solve the Discrete Logarithm Problem with the Number Field Sieve, Public Key Cryptography, pp.174-190, 2006.
DOI : 10.1007/11745853_12

D. Coppersmith and S. Winograd, On the asymptotic complexity of matrix multiplication, SFCS'81. 22nd Annual Symposium on, pp.82-90, 1981.

W. Diffie and M. Hellman, New directions in cryptography, IEEE Transactions on Information Theory, vol.22, issue.6, pp.644-654, 1976.
DOI : 10.1109/TIT.1976.1055638

]. D. Gor93 and . Gordon, Discrete logarithms in gf (p) using the number field sieve, SIAM Journal of Discrete Mathematics, vol.6, pp.124-138, 1993.

R. [. Joux and . Lercier, Improvements to the general number field sieve for discrete logarithms in prime fields. A comparison with the gaussian integer method, Mathematics of Computation, vol.72, issue.242, pp.953-967, 2003.
DOI : 10.1090/S0025-5718-02-01482-5

URL : https://hal.archives-ouvertes.fr/hal-01102016

H. W. Lenstra, Factoring Integers with Elliptic Curves, The Annals of Mathematics, vol.126, issue.3, pp.649-673, 1987.
DOI : 10.2307/1971363

M. [. Pohlig and . Hellman, An improved algorithm for computing logarithms over<tex>GF(p)</tex>and its cryptographic significance (Corresp.), IEEE Transactions on Information Theory, vol.24, issue.1, pp.106-110, 1978.
DOI : 10.1109/TIT.1978.1055817

]. S. Poh77 and . Pohling, Algebraic and combinatoric aspects of cryptography, 1977.

J. Pollard, The lattice sieve. The development of the number field sieve, pp.43-49, 1993.

]. C. Pom82 and . Pomerance, Analysis and comparison of some integer factoring algorithms, Mathematisch Centrum Computational Methods in Number Theory, 1982.

]. C. Pom08 and . Pomerance, A tale of two sieves. Biscuits of Number Theory, p.85, 2008.

O. Schirokauer, Virtual logarithms, Journal of Algorithms, vol.57, issue.2, pp.140-147, 2005.
DOI : 10.1016/j.jalgor.2004.11.004

]. V. Sho90 and . Shoup, Searching for primitive roots in finite fields, Proceedings of the twenty-second annual ACM symposium on Theory of computing, pp.546-554, 1990.

]. V. Sho09 and . Shoup, A computational introduction to number theory and algebra, 2009.

]. R. Sil87 and . Silverman, The multiple polynomial quadratic sieve, Mathematics of Computation, vol.48, issue.177, pp.329-339, 1987.

[. Stark, The Gauss Class-Number Problems Analytic number theory: a tribute to Gauss and Dirichlet, p.247, 2007.

D. H. Wiedemann, Solving sparse linear equations over finite fields, IEEE Transactions on Information Theory, vol.32, issue.1, pp.54-62, 1986.
DOI : 10.1109/TIT.1986.1057137