Multi-subject dictionary learning to segment an atlas of brain spontaneous activity

Abstract : Fluctuations in brain on-going activity can be used to reveal its intrinsic functional organization. To mine this information, we give a new hierarchical probabilistic model for brain activity patterns that does not require an experimental design to be specified. We estimate this model in the dictionary learning framework, learning simultaneously latent spatial maps and the corresponding brain activity time-series. Unlike previous dictionary learning frameworks, we introduce an explicit difference between subject-level spatial maps and their corresponding population-level maps, forming an atlas. We give a novel algorithm using convex optimization techniques to solve efficiently this problem with non-smooth penalties well-suited to image denoising. We show on simulated data that it can recover population-level maps as well as subject specificities. On resting-state fMRI data, we extract the first atlas of spontaneous brain activity and show how it defines a subject-specific functional parcellation of the brain in localized regions.
Type de document :
Communication dans un congrès
Information Processing in Medical Imaging, Jul 2011, Kaufbeuren, Germany. Springer, 6801, pp.562-573, 2011, Lecture Notes in Computer Science. 〈10.1007/978-3-642-22092-0_46〉
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00588898
Contributeur : Gaël Varoquaux <>
Soumis le : dimanche 19 février 2012 - 15:54:18
Dernière modification le : vendredi 22 juin 2018 - 01:20:23
Document(s) archivé(s) le : jeudi 14 juin 2012 - 16:40:26

Fichiers

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Gaël Varoquaux, Alexandre Gramfort, Fabian Pedregosa, Vincent Michel, Bertrand Thirion. Multi-subject dictionary learning to segment an atlas of brain spontaneous activity. Information Processing in Medical Imaging, Jul 2011, Kaufbeuren, Germany. Springer, 6801, pp.562-573, 2011, Lecture Notes in Computer Science. 〈10.1007/978-3-642-22092-0_46〉. 〈inria-00588898v2〉

Partager

Métriques

Consultations de la notice

3088

Téléchargements de fichiers

1020