
HAL Id: inria-00589414
https://inria.hal.science/inria-00589414

Submitted on 2 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Document based modeling of Web services
choreographies using Active XML

Loic Helouet, Albert Benveniste

To cite this version:
Loic Helouet, Albert Benveniste. Document based modeling of Web services choreographies using Ac-
tive XML. International conference on Web Services, Jul 2010, Miami, United States. �inria-00589414�

https://inria.hal.science/inria-00589414
https://hal.archives-ouvertes.fr


Document based modeling of Web services

choreographies using Active XML

Löıc Hélouët and Albert Benveniste (surname.name@inria.fr)
INRIA-Rennes, Campus de Beaulieu, 35042 Rennes Cedex, France

Abstract—This paper proposes a document based
framework for the modeling of web-based choreogra-
phies involving a tight combination of workflow and
data management. Our starting point is Active XML
proposed by S. Abiteboul — AXML documents are
XML documents with embedded service calls. We en-
hance Active XML with a rich notion of interface and
we propose an effective technique to decide if provided
services and needs of callers (defined as interfaces) are
compatible. We also explicitly take distribution into
account and allow for the composition of distributed
AXML systems.

Keywords-Web services, composition, Active XML,
choreographies.

I. Introduction

E-business and supply chain management involve a
combination of widely distributed workflow systems and
data/information management. According to [1], these
systems can be viewed from one of the following perspec-
tives:

• Workflow based perspective, in which process is em-
phasized. Web services and their orchestrations are
now considered an infrastructure of choice for man-
aging business processes and workflow activities over
the Web infrastructure [2]. BPEL [3] has become
the industrial standard for specifying orchestrations.
Besides BPEL, the Orc formalism has been proposed
to specify orchestrations, by W. Cook and J. Misra
at Austin [4].

• Information based perspective, which emphasizes the
information dimension, viewing processes as opera-
tions that are triggered as a result of information
changes. Information centric systems typically rely on
database oriented technologies.

Today, technologies in use for these two aspects are mostly
separated. The WIDE approach [5], [6] was a first attempt
toward tightly combining them. This attempt was further
developed in [1], where the three dimensions of process,
information, and organization, are considered. In response
to the same need, the notion of “business artifact” has
been proposed at IBM as a framework tightly combining
workflow and data management [7]. See [8] for a brief

This work was partially funded by the ANR national research pro-
gram DOTS (ANR-06-SETI-003), DocFlow (ANR-06-MDCA-005)
and the project CREATE ActivDoc.

survey, and [9] for a use of business artifacts in the context
of Active XML, i.e., closer to our present study.

The above attempts (with the exception of [9]) do not
build on top of the reference for documents manipulation,
namely XML [10]. Active XML (AXML) [11] was proposed
by Serge Abiteboul et al. as a high-level specification
language tailored for data-intensive, distributed, dynamic
Web services. It mainly consists in XML documents with
embedded service calls. It allows for lazy evaluation: ser-
vices can return structured data that contain references to
services that have to be called to continue the evaluation of
the returned values if needed. AXML offers mechanisms to
store and query structured data distributed over entities
called peers but does not provide ways to define control
flows. AXML was then extended with guarded service calls
to capture control flows [12], [9].

However, distribution in Guarded AXML is only re-
flected through the localization of a service, and some
guards apply to the whole system, without considering
distribution of information. On the other hand, distribu-
tion and decentralization are central concepts in Service
Oriented Architectures, in which software components
know each other only through their interfaces. Interfaces
must depict precisely the data that will be sent as an input
to a service, and the expected valid returns. A component
uses a service only if the service interface fulfills its needs.

In this paper we further build on top of Guarded
AXML by, first, proposing a notion of interface, and,
second, taking distribution into account explicitly. The
resulting model is called Distributed Active XML. It offers
a notion of composition that allows enriching in a modular
way a set of peers owning services with more peers offering
more services. Our extensions to the existing framework
are illustrated through an existing case study, the Dell
supply chain.

The paper is organized as follows. Section II recalls
the needed background on AXML. The Dell supply chain
example is discussed in section III; this is a challenging
case, as it is a choreography that combines workflow and
data management; the detailed modeling of the Dell supply
chain example can be found in [13]. Section IV is the
core of this paper, and presents our model of Distributed
Active XML; a detailed and fully formal presentation can
be found in the extended paper [13]. Issues of decidability
and complexity are reported in section V; again, details are



found in [13]. Section VI concludes this work and draws
some perspectives on future work on AXML platforms.

II. Documents, patterns, and queries

In this section we give a sketch of the background
material on documents that is used in Active XML. A
more precise and formal definition can be found in [13].
An AXML description consists in (active) XML docu-
ments and services distributed over a set of agents called
peers. Information owned by each peer is stored as XML
documents. In this framework, documents are unranked
and unordered forests F (i.e., sets of trees T ) whose non
terminal nodes are labeled with tags and whose leaves are
labeled with data or service calls. Documents are hence
used to specify records as in usual XML databases but also
workflows in the form of “things to do” (todo’s for short).
Todo’s appear in documents as service calls, represented
with nodes labeled by !f (where f is the name of a service).
Examples of documents are found in Figure 2, top, and in
Figure 4. A service call is marked with a “!” to indicate
that the service is to be called, with a “?” to indicate that
the service is being processed, or has no mark to indicate
that the service call has been completed to its end.

Documents can be tested using patterns. A pattern is
a tree with two types of edges: / to indicate the child
relation, and // to indicate the descendant relation, where
“descendant”means any finite iteration of “child”. Internal
nodes of patterns can be labeled with tags or with the
special label ⋆ to refer to an arbitrary tag. Leaves can be
labeled with tags, data, service calls, or variables. These
patterns are exactly those defined in [14], and without
variables, correspond to a fragment of Xpath frequently
used in the literature [15]. An example of pattern is found
on Figure 1, diagram on the left. This pattern checks
for the presence of an order in a document. Patterns
can be given conditions which are constraints relating
their variables of the following form: X ∼ Y , where
∼∈ {=, 6=,≤}.

Q =

⋆

Order

name

X

Object

Y

Price

Z

−→
users

{client}

X

Sold

{Product}

Y Boffer

Figure 1. An example of nondeterministic query Q = B → H; B is
a pattern and H is a forest.

Testing a pattern B on a document F consists in
searching for a matching of B into F , i.e., a map µ,
from the nodes of B to the nodes of F , respecting child
and descendant relations, mapping the root of B to a
root of a tree in F , and preserving the labels, with ⋆
interpreted as any label. Matchings are not required to
be injective. Pattern B of Figure 1 can be successfully
tested on document F of Figure 2, top. For the considered

CMD

Order

Name

John

Object

Mouse

Price

15

Order

Name

Robert

Object

Screen

Price

150

Order

Name

John

Object

Keyboard

Price

9

Users

Client

John

Client

Robert

Sold

Product

Mouse yes

Product

Screen no

Product

Keyboard no

Figure 2. A sample document F (top) and a result of query Q(F )
(bottom), for Q as in Figure 1.

document, there are three different maps sending pattern
B onto the unique tree in F . Intuitively, each mapping
corresponds to a recorded Order in the document. A
document F satisfies a pattern B, written F |= B iff there
exists at least one matching from B to F .

Documents can be transformed by means of queries. A
query is a pair Q = B → H, where B is called the body and
H the head of the query. In a query, the body is a pattern
and the head is a forest, where each tree possesses a special
node called the constructor node, shown with brackets.
Figure 1 shows an example of query. A query operates on
a documents F as follows: first, all matchings of pattern
body into F are computed. These matchings define the
valuations of variables in body. Then, each valuation is
used to replace the variables in the subtrees of pattern
head rooted at constructor nodes by their valuation, or
by a nondeterministically chosen value if the variable does
not appear in the body part. If the head pattern contains
some constraints, then these valuations must be chosen
consistently. The result of the query is then computed by
replacing in the head the subtrees rooted at constructors
by the subtrees computed from the mappings.

The result of applying query Q of Figure 1 to document
F of Figure 2, top, is shown on of Figure 2, bottom.
Note that variable Boffer is chosen nondeterministically in
{yes, no}. Choosing nondeterministic values for variables
was not originally proposed in [12] (though it could be
emulated by some additional service), but seems an inter-
esting way to allow for uncontrolled choices in modeled
systems. In particular, non-determinism allows for the
description of open systems (the environment can then be
modeled as non-deterministic services) and also allows for
underspecification of some parts of an AXML system.

At this point we did not model service calls, that were
just introduced as distinguished labels. We will provide a
semantics of calls and develop our model of Distributed
Active XML (DAXML) in the following sections.

III. Motivation

In this section we motivate our approach with an
interesting example, the Dell supply chain. This case study
combines aspects of Web stored data management — the



Dell Web portal — and complex distributed supplier chain
involving logistics. Data are important and structured,
both in the Dell catalog and in the processing of the
supplier chain. The underlying workflow is rich and is a
choreography [4] since there is no central orchestrator. Our
study relies on the well documented description [16].

A. The Dell supply chain example

This example works as follows. After a customer places
an order, either by phone or through the Internet on
www.dell.com, Dell processes the order through financial
evaluation (credit checking) and configuration evaluation
(checking the feasibility of a specific technical configu-
ration), which takes two to three days, after which it
sends the order to one of its manufacturing plants in
Austin, Texas. These plants can build, test, and package
the product in about eight hours. The general rule for
production is first in, first out, and Dell typically plans
to ship all orders no later than five days after receipt.
In most cases, Dell has significantly less time to respond
to customers than it takes to transport components from
its suppliers to its assembly plants. To compensate for
long lead times and buffer against demand variability, Dell
requires its suppliers to keep inventory on hand in the
Austin revolvers (for “revolving” inventory). Revolvers are
small warehouses located within a few miles of Dell’s as-
sembly plants. Each revolver is shared by several suppliers.
Inventory in revolvers is owned and managed by suppliers
and charged to Dell indirectly through component pricing.
To help suppliers make good management decisions, Dell
shares its forecasts with them once per month.

The overall architecture of the Dell supply chain is
shown on Figure 3. Boxes denote peers (actors of the
system), and multiple boxes indicate that there exist
several instances of the considered peer. The customer and
adjacent arrows are not within the scope of our model, so
we will only provide the expectations of the customer in
the form of an interface. As the “Dell supervisor” involves
monitoring (a topic in itself) and a lot of algorithmic
inventory management, we leave aside this part of the ap-
plication. The Dell supply chain involves several services,
which are summarized in Table I. Observe that the last
three services need access to the revolver.

B. Services, calls & distribution

Service specification uses the tree pattern matching
mechanism defined in section II to define guards, and
queries (in the spirit of Xquery [17]) to create new doc-
uments out of existing ones. Services decompose into a
call — submitting a query — and a return — receiving a
response and inserting it in the due place in the document.
Both call and return are specified using guarded queries
over documents. A call to a service usually proceeds as
follows. When the service is owned by the peer calling
it, the call consists in applying a query to the peer’s
document. The result of this query is defined to create

supervisor
Dell

order

artifact)
(business

shipping

revolver

supplier

plant

webstore
Dell

bank

gathering statistics

reconfiguration

tuning
setpoint

monitoring

reconfiguration

Figure 3. Architecture of the example.

a temporary working space (called the workspace of the
service call) used to process the call (which can take
several steps of computation if the workspace still contains
todo’s). A service call returns when one of its return
queries is applicable to the workspace, i.e. when one of
the guards of its return queries becomes true. The result
of the considered query is then computed and inserted in
the caller’s document close to the node at which the service
was requested.

When a peer calls a service owned by another peer, it
places a new occurrence of service call in the distant peer’s
document, together with some parameters collected on its
own document. When this distant service is completed, the
distant peer sends back the result of his computation to the
calling peer. Services calls and returns are executed in any
order when their guards are true. The firing policy is local
to each peer, which can be either eager (try to replace all
service nodes tagged by some !f), lazy (perform service call
only when needed), localized (focus first on the services
of some tree/subtree), etc. So far, we hide all the details
of this machinery, which will be made clear during the
specification of (part of) the Dell example. A more formal
presentation of our model is also provided in subsequent
sections and in [13].

Main

Order

!DellOrder Customer

Name

Smith

BankData

Card#

1234

Computer

Name

E4300

Catalog

Computer

Name

E4300

Price

1000

Figure 4. Initial document.

The Dell supply chain decomposes into several peers,
namely the Customer, the Webstore, the Plant, the
Revolvers, the Suppliers, the Bank, and the Supervisor.
An example of document owned by peer Webstore is
given in Figure 4. It contains one order that has been
posted to the WebStore, represented by a subtree with
root Order, that contains a call node with !DellOrder



Service Description
DellOrder Returns a computer to a customer in conformance with the order form

GiveOrderId Gives a new identifier to a computer order form
CheckCredit Checks whether a customer has sufficient credit; performed by the bank
RejectOrder Rejects an order if customer has insufficient credit on his bank account or order incorrect

ProcessOrder Collects and assemble items, and delivers the assembled computer
GetItem Gets a given item from the revolver

DecrementInventory Removes one item from the revolver
RefuelInventory Adds a certain number of items to the revolver

Table I
Dell Supply Chain: simplified description of the services

tag. The parameters of the command appear as siblings of
the call node. The document also contains a catalog, that
lists types of computers together with their price.

We assume that peers are distinct computation units
or actors in the system, and do not have direct access to
the documents or internal machinery of other peers. Hence
a peer sees another peer through the services it provides,
i.e. via interfaces depicting the relations between inputs
to a service during call, and the expected results that
may be returned. More precisely, an interface consists of a
pattern depicting the allowed parameters of a call, a list of
patterns depicting the shape of returned documents, and
a constraint over the variables of these patterns.

Let us illustrate interfaces with an example. In the dell
supply chain, customers see service DellOrder provided by
the Webstore only through an interface IDellOrder. This
interface is shown on Figure 6. It consists of two patterns
and an assertion. Call pattern IC specifies that the cus-
tomer should submit a product reference, a catalog price,
and his credit card information to the Webstore. In turn,
the customer expects the delivery of the ordered product,
as specified by the return pattern IR. Together with an
additional assertion [X ′

C = XC], this interface specifies
that, when calling DellOrder service, the customer should
receive the computer she ordered.

Let us detail how the Webstore implements the
DellOrder interface in Figure 7. The call guard for the cor-
responding DellOrder service is simply true, which means
that a call to service DellOrder can be processed by the
Webstore as soon as a node tagged by !DellOrder exists in
the document. The call query QC of the DellOrder service
copies all the needed parameters and creates instances
of service calls (GiveOrderId, CheckCredit, RejectOrder,
ProcessOrder) that have to be completed to process the
order. Note that this also requires that the order has been
correctly filled, and that the ordered reference appears in
the catalog. When this is not the case, the order will not
be processed.

The returned value depends on whether the order was
accepted or rejected. Here, the implementation of the
DellOrder service consists of a set of two guarded return

queries, namely (G1, Q
R
1 ) and (G2, Q

R
2 ). Query QR

1 returns
a delivery certificate, but can only be executed when the
order has been processed in due form, which is described
by guard G1. Query QR

2 returns a rejected order when
guard G2 holds, that is when the order was tagged as
rejected by service RejectOrder due to, either a negative
answer from the bank, or an incorrect filling of the order
form. Observe that the service specified in Figure 7 is
not a correct implementation of the interface specified
in Figure 6. The main reason is that the customer was
too optimistic in not considering possible rejection of her
payment by the bank. The interface of Figure 6 should in
fact be corrected accordingly, i.e include a pattern for the
rejection case — this is not done here to save space.

Further specifying the services GiveOrderId,
CheckCredit, RejectOrder, and ProcessOrder, would
complete the description of the DellOrder service by
the Webstore. Among these, the first three are internal
services held by the Webstore, whereas ProcessOrder is
a service held by the Plant, a different peer. Hence, the
latter should be specified as an interface when seen from
the Webstore, with corresponding implementation by the
Plant — this mimics what we did in figures 6 and 7.

The implementation of ProcessOrder is shown in part
on Figure 5. The call query of this service creates as
many instances of service GetItem as there are parts (we
show only one); each instance is given a unique identifier
XIdent. Service GetItem is owned by the plant. The return
guard GR requires that each item has been properly
obtained by the Plant (this process is not described in this
shortened version of the case study). The return query of
ProcessOrder is then simply QR = true → processed , thus
enabling the guard GR

1 of DellOrder, see Figure 7.

The following reasoning can be performed on the Del-
lOrder system. It is easily seen that the service performs as
specified, provided that the order is not rejected. Rejection
can occur either because the order was not properly filled,
or because the bank did not approve the transaction. Now,
satisfying the guard GR of ProcessOrder is in the hands
of the peers supplier : they are responsible for maintaining
the stock at appropriate level.



QC =

aDellOrder

Computer

Name

XC

self

−→

{Computer}

Name

XC

item

!IGetItem XIdent

GR =

aAssembleOrder

Computer

GetItem got it

Figure 5. ProcessOrder as implemented by the plant.

This is a separate issue that can be checked based on
the following information: 1/ what is the query rate for
each item by the plant, 2/ how frequently suppliers check
stock level at the revolvers, and, 3/ what is the critical
stock level, for each item, that will cause the supplier
to refuel this stock. This is a more difficult property for
checking, but it is now local to the peers Revolvers and
Suppliers, and does not need a system wide analysis.

C. Discussion

Based on the case study, several remarks can be stated:
a) Documents and workflow must be handled on

an equal basis: the supplier chain involves a complex
workflow that is a combination of several orchestrations:
the Webstore orchestrates the progressive transformation
of the order into a computer for delivery; then, each
supplier maintains independently the stock level at the
revolver. On the other hand, checking that the order
form is properly filled and conforms information from the
catalog is a data issue. However, data and workflow tightly
interact through guards, which involve pattern matching
on documents, and through service calls and returns,
which modify documents.

b) Services are specified in a declarative way: this
is done by specifying guarded call and return queries over
XML documents. We use tree patterns and queries to state
when a service can be invoked, what parameters must be
given when calling it, when it is ready to complete, and
what it can return. Hence, the control flow of a service
execution is not explicitly given. Interfaces are defined
in a similar way, and thus can be compared with the
function that a service offers. We will show that this offers
opportunities for efficient analysis, by replacing a distant
service by an interface for it.

c) A service can involve recursively other services
for its completion: the DellOrder service of Figure 7 is
a typical example. Calling it adds the result of the call
query to the documents owned by the Webstore as a
temporary workspace. This additional document contains
fresh instances of GiveOrderId, CheckCredit, etc., which
must be evaluated. Computing an answer to a call may
involve several recursive calls to other sub-services. With

an ad hoc use of guards, a high-level service can then play
the role of an orchestration of sub-services.

IV. Distributed Active XML

A. Services as Functions

Services are owned by peers. They are captured by the
notion of “function”, whereas external services as seen by
another peer are modeled by “interfaces”.

Definition 1: A function is divided into call and a
return part. The call part consists in a guarded query
(GC , QC) and the return part in a set of a guarded
queries

{

(GR
i , QR

i )
}

i∈1..n
. Guarded queries are simply pairs

consisting of a guard (a pattern) and a query. The query
can be applied to a document only if the associated guard
holds on the considered document.

Let us consider a function DellOrder, with call query
(true,QC) and return queries

{

(GR
1 , QR

1 )(GR
2 , QR

2 )
}

,
where QC , GR

1 , GR
2 , QR

1 , QR
2 are the guards and queries

of Figure 7. As the call guard of DellOrder is true, this
service can be evaluated as soon as a document contains a
!DellOrder node. Consider for example the initial docu-
ment of Figure 4, call it F . The DellOrder service can
be called by peer Webstore. The call query applies to the
document owned by the WebStore.

Applying DellOrder to F with its description in Fig-
ure 7 proceeds as follows. First, the body of the call query
QC is applied to F while node labeled self in the body
is mapped to node labeled !DellOrder in F . Valuations
for the variables result, namely XN=Smith, and so on.
The selected values are then assigned to the corresponding
variables in the head of call query QC , and the resulting
document is put in a workspace WS pointing to node
?DellOrder of document F ; note the shift from mark ! to
? for DellOrder, indicating evaluation in progress. Initial
document F is augmented with WS . Usually, workspaces
are trees with root labeled by distinct tags of the form af

for each service name f . This allows in particular specify-
ing that a query applies to a workspace, or checking that a
service is under evaluation on a peer. As a consequence of
the DellOrder call, new service calls appear for evaluation
by the different peers that own each new service, thus
further modifying the status of the document.

If, as a result, return guard GR
1 holds in the workspace,

then return query QR
1 can be applied. The result QR

1 (WS),
that is a forest containing the reference of the order, the
actual reference of the assembled computer, and a node
with tag delivered is appended as a sibling to the calling
node, and the workspace WS is deleted. If, however, return
guard GR

2 holds in the document, then return query QR
2

can be applied to the workspace, which appends a forest
containing the reference of the order, and a node with
tag rejected, and deletes the workspace. In both cases,
the calling node with tag ?DellOrder is relabeled with
Dellorder, indicating that the call is completed.



IC =

Main

Order

self Customer

Name

XN

BankData

Card#

X#

Computer

Name

XC

Catalog

Computer

Name

XC

Price

XPrice

IR =
{

{OrderId}

Y

{ActualComputer}

Name

X′

C

Price

XPrice

delivered
}

Figure 6. IDellOrder, external view from customer as an interface, with its assertion
ˆ

X′

C
= XC

˜

.

QC =

Main

Order

self Customer

Name

XN

BankData

Card#

X#

Computer

Name

XC

Catalog

Computer

Name

XC

Price

XPrice

−→ {Order}

Customer

Name

XN

BankData

Card#

X#

Computer

Name

XC

Price

XPrice

!GiveOrderId
!CheckCredit
!RejectOrder
!ProcessOrder

GR
1 =

aDellOrder

processed

, QR
1 =

aDellOrder

OrderId

Y

ActualComputer

Name

X′

C

Price

X

processed
−→

{OrderId}

Y

{ActualComputer}

Name

X′

C

Price

X

delivered

GR
2 =

aDellOrder

rejected

, QR
2 =

aDellOrder

OrderId

Y

rejected −→ {OrderId}

Y

rejected

Figure 7. DellOrder, implementation by Webstore.

The move from a document F0 to another document
F1 as the result of a call to and a return from service f
are written F0 ⊢f,call

func F1 and F0 ⊢f,ret
func F1, respectively, and

we simply write F0 ⊢f
func F1 to refer to any of the above

two cases.

B. External services as interfaces

We aim at distributing active XML, and to this extend,
distant services should be perceived only through the
functionalities they provide. This notion is captured by
interfaces. Figure 6 depicts an interface for the DellOrder
service. This interface can be seen by the customer, who
can thus say something about 1/ what parameters she
must submit to the service call, and 2/ what are the
possible returns of the service.

Definition 2: An interface is a pair (IC, {IR
i }i∈1..n)

consisting of a call and a set of return patterns, possi-
bly enhanced with constraints over variables of IC and
IR
i , i ∈ 1..n.

Interfaces can be seen as descriptions of distant ser-
vices. When such services are not explicitly provided,
it seems interesting to study the evolution of a system
under any implementation. This is captured as follows.
Document F0 can move to document F1 under interface

I = (IC, {IR
i }i∈1..n), written F0 ⊢I

intf F1, if 1/ F0 satisfies
IC, and 2/ the increment F1\F0 satisfies some IR

i , i ∈ 1..n.

In the following, we will also use interfaces to depict
the functional needs of some peer, and relate local needs
to a distant implementation (an access to a local function
provided by another peer). However, we need to ensure
that a service provides a correct implementation before
connecting an interface and a function. This is formalized
under the notion of implementation:

Definition 3: A function f implements an interface I,
written f ||= I iff 1/ for every document F in which IC

holds, there is a matching from the body of the call query QC
f

of f to F , and 2/ every document returned by f satisfies
at least one return pattern IR

i . Assertions of I must be
satisfied as well, if any.

Intuitively, condition 1/ means that when parameters of
a call satisfy the call pattern of an interface, then they
will be correct inputs to a service, and condition 2/ means
that all returned values are compatible with the expected
results specified in the interface. The function in Figure 7
is not an implementation of the interface in Figure 6, as the
rejection case is not considered by the interface. Observe
that interfaces involve no guard, and that relation f ||= I
does not involve the call guard of f ; the reason for this is



that guards must be tested at the peer owning the service.

Relation ||= is formally defined in [13], where it is
shown that it can be brought back to two instances of a
query containment [18], [15], plus an instance of pattern
matching problem. Implementation relation ||= is shown
to be decidable and of complexity Co-Nexp-Time under
some assumptions on the domains of variables and on the
type of constraint used in the interface.

C. The Distributed Active XML model

An Active XML system S, as described in [12] consists
of a set P of peers, a set Φint of functions — the internal
services — and a set Φext of interfaces — the external
services — both located on one of the peers. For each
initial document F0, S gives raise to a set of possible
runs, which are the possible sequences F0 ⊢ F1 ⊢ . . . of
documents obtained by performing moves under calls to
internal and external services contained in F0, and to the
new service calls that result, inductively.

AXML systems do not consider the effect of distri-
bution, and external services are just underspecified (via
interfaces in our definition, and via DTDs in the original
AXML model). In particular we have to describe the effect
of a call to a distant service that implements an interface.
We first enhance our previous notion of AXML system to
take distribution and implementation into account, and
then consider the semantics of DAXML.

Definition 4: A Distributed AXML system (DAXML
system) S = (P; Φint,Φext;L; γ) is a tuple comprising:

• a set P of peers,
• two disjoint sets Φint and Φext of functions and inter-

faces,
• a location map L : Φint ∪ Φext 7→ P, and
• an implementation map γ : Φext 7→ Φint which is a

partial function such that γ(I) ||= I for each interface
I ∈ Φext.

It is required that L(γ(I)) 6= L(I), reflecting that service
interfaces are used by distant peers other than the one
owning the service.

DAXML systems compose as follows: S1 ‖ξ S2 is given
by: P = P1 ∪ P2, Φint = Φ1

int ∪ Φ2
int, L = L1 ∪ L2,

Φext = Φ1
ext ∪ Φ2

ext, and γ = γ1 ∪ γ2 ∪ ξ, where the pairing
map

ξ :
(

Φ1
ext ∪ Φ2

ext

)

\
(

D(γ1) ∪ D(γ2)
)

7→ Φ1
int ∪ Φ2

int

assigns interfaces of one system to functions of the other
system implementing them. The parallel composition is
only defined if L1 and L2 agree on the common part of
their respective domains, and similarly for γ1 and γ2.

Distributed documents: Documents are distributed over
peers: a document is thus a forest F , and there exists a
map ℓ such that ℓ(F ) ∈ P localizes each tree F of forest F
on a peer. Distribution of documents is an important issue,
as a peer should not have direct access to data or services
owned by another peer. In the original AXML model,

services are called and guards are evaluated over a global
document, regardless of who owns the data. We propose an
interpretation of distribution that allows access to remote
data and services only via distant service calls. Distributed
AXML documents located on a peer p contain references
to services provided by p (nodes with labels of the form !f
with f ∈ L−1(p)∩Φint) and references to interfaces (nodes
with labels of the form !I with I ∈ L−1(p) ∩ Φext). Each
peer knows exactly which service on which distant peer
implements its external functions.

The first easy cases are local service and interface
moves. A local call to a service or interface owned by a
peer p only modifies the part of the distributed document
owned by p. Let us call this part of the distributed
document Fp. Then, there is a local move F ⊢ F ′ from
document F to document F ′ iff there is a move from Fp

to some F ′
p as defined in sections IV-A and IV-B, and

the rest of the document located on other peers does not
change (i.e. F \Fp = F ′\F ′

p). We only allow local interface
moves for interfaces that are not implemented.

The remaining case is then distant service calls.
An external call to an implemented interface I =
(IC, {IR

i }i∈1..n) can be performed if a peer p owns a node
labeled by !I. Calling I consists in replacing label !I by ?I
in Fp, and appending to the peer that implements I (say
with a service g) a new tree with root aI , that contains
a node labeled !g and the smallest set of subtrees of Fp

where IC holds. This can be considered as sending to a
peer a request to execute g with some parameters, and
creating a distant workspace. Note that this move is only
allowed for implemented interfaces.

A return from a an external service call can be per-
formed only when the distant service has been completed,
that is the previously created distant workspace contains
a node labeled g, with no ! or ? mark. The computed
result is deleted from the callee’s document, and appended
as a sibling of the external calling node in the caller’s
document. The label of the calling node is then set to I.

We will not give more details on the semantics of
DAXML, and refer to [13] for a complete operational
description. In the rest of the paper, we will simply write
F ⊢ F ′ and say that there is a move from F to F ′ when F ′

is a distributed document obtained after executing some
operation (internal/external call or return) from F . We
say that F is deadlocked if there exists no F ′ such that
F ⊢ F ′. A run of a system S from a distributed document
F0 is an infinite sequence ρ = F0, . . . , Fn, .. of instances
over S, such that for every i, either Fi ⊢ Fi+1 or Fi is
deadlocked and Fi = Fi+1. We denote by Runs(F0,S) the
runs of S starting at F0.

Locality in DAXML: Let S be a DAXML system and
R ⊂ P be a subset of its set of peers. One can restrict S to
R, written S|R , by simply restricting the set of functions
and interfaces to those located on R, and restricting the
location map accordingly.



Similarly, for F a distributed document for S, we can
restrict F to its subset of trees located on R, written
F|R . Then, a run ρ = F0, F1, . . . of S can be projected
over R, written ΠR(ρ), by 1/ considering the sequence of
restrictions F0|R , F1|R , . . . , and, 2/ only keeping, in the
so restricted run, changes that are local to R. For R a
singleton {q}, Πq(ρ) records what can be seen from peer
q in run ρ. Local runs satisfy the following property for
every system S and distributed document F0 [13]:

ΠR(Runs(F0,S)) ⊆ Runs(F0|R ,S|R )

which expresses that the local view, by a subset of peers,
of any run of the overall system, conforms with the set of
runs specified by replacing distant calls by their interfaces.
This property is important, as it allows to check locally for
safety properties such as the absence of a bad pattern in
any run of an AXML system.

V. Issues of decidability and complexity

Issues of decidability and complexity impacted our
design choices in the following aspects of our model: how
interfaces should be defined, and what kind of property
can be checked on a DAXML system. We begin with the
notion of interface and study the implementation relation.

A. Complexity of the implementation relation

The first question is that of the complexity of pattern
matching F |= P . Obviously, testing if T |= P is an NP-
complete problem as soon as variables are used (which
allows encoding a SAT problem). We can reduce complex-
ity of pattern matching, and then, of implementation, by
stating assumptions regarding variables or the shape of
patterns. The child-only assumption holds when a pattern
does not use descendant edges. The finite-domain assump-
tion holds when variables range over finite domains.

The following result is proved in [13]: let I be an
interface and f be a function which variables range over
finite domains, and such that additional constraints do not
involve at the same time variables of IC and {IR

i }i∈1..n

(that is we forbid expressions of the form X < Y ,
(X = α) =⇒ (Y = β), etc. when X is a variable of IC

and Y a variable of IR
i for some i ∈ 1..n). Then, deciding

whether f ||= I is a Co-NexpTime problem. However,
without the finite domain assumption, or with generic
constraints on variables, f ||= I becomes an undecidable
problem.

Observe that our implementation relation (definition 3)
is not tractable with assertions such as the side conditions
of functions and interfaces in the examples of figures 6 and
7. The reason is that considering them would immediately
lead to undecidability of the implementation relation —
this fact is explained in the next paragraph. However,
it is still possible to leave the assertions aside when
verifying implementation, and to handle them separately
(for instance at runtime).

B. Reachability and Tree-LTL logic

It is shown in [13] that it is undecidable whether a
pattern P is reachable by some run of a DAXML system
S starting from a given initial document F0. This undecid-
ability result is not related to distribution; it holds already
with a single peer and internal services only [12]. It can
be avoided if negative patterns are forbidden in guards
(they are considered in [13], but we did not allow them
for simplicity) and if unbounded recursive calls between
functions are forbidden too.

A consequence is that some restrictions on assertions
are also needed to keep implementation decidable. Con-
sider for instance the assertion [X ′

C = XC] in figures 6 and
7. Ensuring it is a reachability problem as it amounts to
requiring that X ′

C can reach a prescribed value in some
run. This is undecidable unless stringent assumptions are
made, as we have seen. Hence, allowing any type of asser-
tion in the implementation relation leads to undecidability.

More complex properties on the runs of DAXML sys-
tems can be formulated using formulas from the logic Tree-
LTL [12], defined by the following grammar:

φ ::= Qpattern | φ ∧ φ | ¬φ | φU φ | ©φ,

where Qpattern is a Qpattern, i.e., a pattern P in which
some variables are declared free and universally quantified
over the formula, and ∧,¬, U ,© have the usual meaning
of LTL. It is shown in [13] that our new notions of interface
and DAXML system keep complexity and decidability
issues unchanged as compared to the original results of [12]
concerning guarded AXML: distribution comes for free.

VI. Conclusion and perspectives

This paper has introduced an XML based distributed
framework for services choreographies, thus supporting
information and workflow management in a unified frame-
work. We have defined a rich notion of service interface
for this framework. Distant calls via interfaces ensure
interoperability between agents of a system, but also
encapsulation of data and services in peers. Interfaces are
useful to analyse partially specified designs where some
implementations are only known via their interfaces. We
see this as a promising research direction.

Our model relies on a querying mechanism that uses
tree patterns (a fragment of Xpath). However, AXML can
easily be adapted to other query mechanisms (possibly
with different decidability issues). Finally, let us mention
that an experimental AXML platform has been developed
by the Active XML community (www.activexml.net).
This implementation relies on standards for web services
and is then open to all systems implementing these stan-
dards.

Acknowledgment: We are indebted to Serge Abiteboul,
Victor Vianu, and Luc Segoufin, for fruitful discussions on
this work.



References

[1] J. Wang and A. Kumar, “A framework for document-driven
workflow systems,” in Business Process Management, 2005, pp.
285–301.

[2] W. van der Aalst and K. van Hee, Workflow Management:
Models, Methods, and Systems. MIT Press, 2002.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, I. Thatte D. (Editor),
Trickovic, and S. Weerawarana, “Business Process Execution
Language for Web Services. [BPEL4WS.] version 1.1,” May
2003.

[4] J. Misra and W. Cook, “Computation orchestration,” Software
and Systems Modeling, vol. 6, no. 1, pp. 83–110, March 2007.

[5] S. Ceri, P. Grefen, and G. Sanchez, “Wide: A distributed archi-
tecture for workflow management,” in Research Issues in Data
Engineering (RIDE ’97), 1997, p. 76.

[6] D. Chan, J. Vonk, G. Sanchez, P. Grefen, and P. Apers, “A spec-
ification language for the wide workflow model,” in symposium
on Applied Computing (SAC), 1998, pp. 197–199.

[7] A. Nigam and N. Caswell, “Business artifacts: An approach to
operational specification,” IBM Systems Journal, vol. 42, no. 3,
pp. 428–445, 2003.

[8] R. Hull, “Artifact-centric business process models: Brief survey
of research results and challenges,” in On the Move to Meaning-
ful Internet Systems (OTM) Conferences, ser. Lecture Notes in
Computer Science, vol. 5332. Springer, 2008, pp. 1152–1163.

[9] S. Abiteboul, L. Segoufin, and V. Vianu, “Modeling and verify-
ing active XML artifacts,” IEEE Data Eng. Bull., vol. 32, no. 3,
pp. 10–15, 2009.

[10] “The Extensible Markup Language (XML) 1.0 (2nd Edition),”
http://www.w3.org/TR/REC-xml.

[11] S. Abiteboul, O. Benjelloun, and T. Milo, “The active XML
project: an overview,” VLDB J., vol. 17, no. 5, pp. 1019–1040,
2008.

[12] S. Abiteboul, L. Segoufin, and V. Vianu, “Static analysis of
active XML systems,” in Symposium on Principles of Database
Systems (PODS), 2008, pp. 221–230.

[13] L. Hélouët and A. Benveniste, “Distributed active XML and
service interfaces,” INRIA, RR no 7082 7082, 2009,
http://hal.inria.fr/docs/00/42/94/33/PDF/RR-7082.pdf.

[14] C. David, “Complexity of data tree patterns over XML doc-
uments,” in Mathematical Foundations of Computer Science
(MFCS), ser. Lecture Notes in Computer Science, vol. 5162.
Springer, 2008, pp. 278–289.

[15] G. Miklau and D. Suciu, “Containment and equivalence for a
fragment of xpath,” J. ACM, vol. 51, no. 1, pp. 2–45, 2004.

[16] R. Kapuscinski, R. Zhang, P. Carbonneau, R. Moore, and
B. Reeves, “Inventory Decisions in Dell’s Supply Chain,” Inter-
faces, vol. 34, no. 3, pp. 191–205, 2004.

[17] W. W. W. Consortium, “Xquery 1.0: An XML query language,”
W3C, Tech. Rep., Jan. 2007, D.Chamberlin, A. Berglund, S.
Boag, et. al., Editors.

[18] T. Schwentick, “Xpath query containment,” SIGMOD Record,
vol. 33, no. 1, pp. 101–109, 2004.


