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A Survey of Non-linear Pre-filtering Methods
for Efficient and Accurate Surface Shading

Eric Bruneton and Fabrice Neyret

Abstract —Rendering a complex surface accurately and without aliasing requires the evaluation of an integral for each pixel,
namely a weighted average of the outgoing radiance over the pixel footprint on the surface. The outgoing radiance is itself given
by a local illumination equation as a function of the incident radiance and of the surface properties. Computing all this numerically
during rendering can be extremely costly. For efficiency, especially for real-time rendering, it is necessary to use precomputations.
When the fine scale surface geometry, reflectance and illumination properties are specified with maps on a coarse mesh (such
as color maps, normal maps, horizon maps or shadow maps), a frequently used simple idea is to pre-filter each map linearly
and separately. The averaged outgoing radiance, i.e., the average of the values given by the local illumination equation is then
estimated by applying this equation to the averaged surface parameters. But this is really not accurate because this equation
is non-linear, due to self-occlusions, self-shadowing, non-linear reflectance functions, etc. Some methods use more complex
pre-filtering algorithms to cope with these non-linear effects. This paper is a survey of these methods. We start with a general
presentation of the problem of pre-filtering complex surfaces. We then present and classify the existing methods according to
the approximations they make to tackle this difficult problem. Finally, an analysis of these methods allows us to highlight some
generic tools to pre-filter maps used in non-linear functions, and to identify open issues to address the general problem.

Index Terms —Rendering, anti-aliasing, pre-filtering, reflectance, surface

✦

1 INTRODUCTION

PHOTOREALISM has always been a major goal of
Computer Graphics. Local and global illumina-

tion models, corresponding respectively to complex
materials and complex light transports, have been
extensively studied. Today, a key problem is the man-
agement of details: highly detailed objects and very
large scenes are prone to aliasing and popping, or to
unreasonable rendering costs. Rendering details ac-
curately and efficiently is thus the new challenge, not
only for real-time applications, but also for CG feature
films (where each frame takes hours to render).

A first step to manage these details is to represent
the fine scale features of each object with some maps,
defined on a coarse object mesh and used as param-
eters in a local illumination model. Typically, these
maps describe the surface geometry, reflectance and
illumination properties in color maps, bump maps,
displacement maps, normal maps, relief maps, hori-
zon maps, shadow maps, etc. The resolution of the
mesh and of the maps is then chosen to provide
enough details in close-up views. However, in many
cases an object can be seen from a wide range of
distances. Then, for distant views, many mesh tri-
angles and many map texels of a single object can
project to the same screen pixel. An accurate and anti-
aliased rendering requires a weighted average over
this footprint, i.e., an integral of the contributions of
all these elements, which can be extremely costly.

• INRIA (Laboratoire Jean Kuntzmann, Université de Grenoble)
• CNRS (Laboratoire Jean Kuntzmann, Université de Grenoble)

Numerous adaptive multisampling methods have
been proposed to compute this integral. These meth-
ods can guarantee accurate, unbiased renderings, but
their rendering time can be arbitrarily high. It is gen-
erally not compatible with real-time applications, es-
pecially with very detailed scenes. Another approach
is to adapt the resolution of the model, i.e., its level
of details, so that only a few triangles and a few
map texels project to a single screen pixel, whatever
the viewing distance. These pre-filtering methods are
much more efficient than adaptive multisampling,
because the coarser mesh and map resolutions of the
model can be pre-computed before rendering. But the
main problem is then to find accurate pre-filtering
methods. Indeed:

• linear pre-filtering is inaccurate. The local illu-
mination equation is a non-linear function of the
incident radiance and of the surface maps. Hence,
evaluating this function on linearly averaged
texel values is only a crude approximation of its
average value over these texels.

• separate pre-filtering is inaccurate when the sur-
face features are correlated. For instance, if the top
and bottom parts of the surface bumps have dif-
ferent colors, then color and visibility are corre-
lated (at grazing angles only the top of the surface
bumps is visible). Then, combining separately
pre-filtered maps is only a crude approximation
of the pre-filtering of their combination.

• pre-filtering the mesh and its maps separately is
inaccurate. For efficient rendering at large view
distances, the coarse mesh itself must be pre-



2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

filtered. The effects on local illumination of the
removed mesh details such as curvature and
bumps must then be incorporated in the maps,
first as normals, then as roughness parameters. A
separate filtering of the mesh and its maps simply
looses these details and is therefore inaccurate.

Because of the three above issues, the general prob-
lem of pre-filtering complex surfaces is still largely
unsolved. Very few methods have been proposed for
the last two issues (see Section 8). However, several
methods have been proposed to solve the first issue,
namely the pre-filtering of complex surface maps used
in a non-linear way for rendering. This paper is a
survey of these methods. It is organized as follows.
In Section 2 we derive the general equation that
pre-filtering methods should try to approximate as
accurately as possible. We also present the uncor-
relation hypothesis used to split this problem into
simpler ones: normal, horizon and shadow map pre-
filtering. We then review the existing methods for each
subproblem in Sections 3, 4, 5 and 6. In Section 7,
an analysis of these methods allows us to highlight
three generic tools to pre-filter maps used in non-
linear functions. We conclude with a discussion of the
validity of the hypotheses made by these methods,
and of open issues, in Sections 8 and 9.

2 COMPLEX SURFACES PRE -FILTERING

The pre-filtering methods discussed in this paper aim
at efficiency, but also at rendering accuracy. In order
to discuss the approximations made by these meth-
ods, sometimes implicitly, we derive in Section 2.1
the general equation that pre-filtering methods are
supposed to approximate as accurately as possible.
We then present their main strategies to tackle this
problem in Section 2.2, and the fundamental tool used
to solve it, namely linear pre-filtering, in Section 2.3.

2.1 Pre-filtering equation

2.1.1 Notations

We consider a complex surface whose fine scale de-
tails are represented via some maps defined on a
coarse mesh (see Fig. 1). We note S the footprint of a
pixel on the surface, and A the orthogonal projection
of S on the coarse mesh. Note that A is different from
the footprint of the pixel on the coarse mesh, except
for vertical views. We note this the parallax offset (see
Fig. 7). We note p and n the points and normals of
S, and v and l the unit vectors towards the viewer
and a light source. We note x and g the points and
normals of A. In an abuse of notations, p (resp. x)
denote either a 3D point or its 2D coordinates on the
surface (resp. mesh), depending on the context. For
instance, in

∫

S
dp, dp is a 2D surface element.

A map is a pattern or a global function or atlas
defined on the coarse mesh and storing attribute(s) of

Fig. 1. Problem statement. S is a complex surface
whose fine scale details are represented via some
maps defined on a coarse mesh A (here color, normal,
horizon and depth maps). We want to compute the sur-
face radiance I in the ∆ω cone for a pixel. This is the
integral over ∆ω of the local illumination equation, itself
parameterized by the surface maps. For efficiency, we
want to avoid a numerical integration over the numer-
ous texels in ∆ω. Instead, we want to compute I from
maps pre-filtered at a coarser resolution. The problem
is that I depends non-linearly on the texel values.

the complex surface. We note mx the value of a map
m at the projection of x along g on S (the surface
is supposed to be a height field in the footprint S).
We note mA its average value on the projection of A
along g. For instance, nx is the normal at x, and nA

its average value (often equal to g). We note mx(. . .) a
map describing a function at each point. For instance,
ρx(l,v) is the surface BRDF at x. In this specific case
only, it is in fact a shorthand notation for a general
function ρ(nx, . . . ,mx, l,v) depending on other maps
defining at each point surface attributes such as the
normal, the tangent vectors, the roughness, etc. We
suppose that all quantities are expressed in a constant
frame, i.e., independent of x and p (like a world frame,
or the tangent frame at the center of A).

We note L(o,ω) the radiance traveling at o from
direction ω = −v. Thus, L(p, l) and L(p,ω) are the
incident and outgoing radiance at p, respectively. We
omit the wavelength parameter λ in all radiance, color
and BRDF quantities, which must then be understood
as scalar quantities for a given wavelength.

We finally use two more shorthand notations: we
omit, most of the time, the index of the normal map

nx, simply noted n; and we note nv
def
= max(n ·v, 0) a

scalar product clamped to 0.

2.1.2 General equation

We can now derive the general “pre-filtering equa-
tion” relating the average outgoing surface radiance
in the footprint A, as a function of the surface maps
used as parameters in the local illumination equation.
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TABLE 1
Important symbols used in this paper.

Symbol Description

w low pass anti-aliasing filter (e.g., a box filter)

S footprint of a pixel on the complex surface

A orthogonal projection of S on the coarse mesh

p a point on the complex surface

x orthogonal projection of p on the coarse mesh

v unit vector towards the viewer at p

l unit vector towards a light source at p

n complex surface normal at p

nv clamped scalar product max(n · v, 0)

g coarse mesh normal at x

kx, kA color at x, average color in A

ρx, ρA BRDF at x, average effective BRDF in A

Vx, VA visibility at x, average bidirectional visibility in A

Ux, UA cast shadow at x, average cast shadow in A

fx, fA function at x, average in A

px, pA probability distribution at x, average in A

For this we start from an averaging equation in screen
space and we progressively transform it to express it
in terms of the maps defined on A.

For a pinhole camera with an instantaneous expo-
sure (see Fig. 1), the intensity I of a given screen pixel
is a convolution of the incident radiance L(o,ω) with
a low-pass filter w over its angular support ∆ω [1],
[2]. This support corresponds to a single pixel for a
box filter, or to several pixels for more efficient anti-
aliasing filters:

I =

∫

∆ω

w(ω)L(o,ω)dω with

∫

∆ω

w(ω)dω = 1 (1)

In order to get an equation in terms of surface maps,
the first step is to rewrite I as an integral over the
footprint S, that we define as the intersection of the
surface with the ∆ω cone (we assume here, without
loss of generality, that S fully covers this cone – if
not, split it in two parts). In case of self-masking, by
definition of S, a view ray intersects S several times,
but only the nearest intersection point contributes to I .
We exclude the others with the function Vp(v) equal to
1 if p is visible from direction v, and 0 otherwise. The
change of variables from ω to p yields the Jacobian
dω = nv

r2
dp where r = ‖p − o‖ is the distance to the

viewer. Thus (1) becomes:

I =

∫

S

w(p)L(p,ω)Vp(v)nv
dp

r2

with

∫

S

w(p)Vp(v)nv
dp

r2
= 1

(2)

Since the solid angle of a pixel is small r and v can
generally be considered as constants in these integrals.
Then r can be eliminated by moving it outside the
integrals.

We can now use the local illumination equation
L(p,ω) =

∫

Ω
L(p, l)R(l,v)nl dl to express the out-

going radiance L(p,ω) as a function of the incident
radiance L(p, l) and of the surface reflectance R:

• we write the incident radiance as the product
E(l)Vp(l)Up(l). E(l) is the distant environment
radiance coming from direction l, supposed quasi
constant over S, or uncorrelated with local fea-
tures. Vp(l) is a self-shadowing term equal to 1
is p is visible from direction l, and 0 otherwise.
Finally, Up(l) is a shadowing term equal to 1 is
p is unoccluded by other objects in direction l,
and 0 otherwise (soft shadows result from an
integral over l). Note that Vp(l) excludes self
inter-reflections. The local illumination equation
also excludes subsurface scattering. These two
effects are discussed in Section 8.

• we write the surface reflectance R as the product
kpρp(l,v), with kp a color and ρp a normalized
BRDF. In general a sum of such terms is used,
for instance to decompose the reflectance into
diffuse and specular components, but this does
not impact our discussion here. Keep also in
mind that both terms implicitly depend on the
wavelength λ.

Putting all this together in (2), we get:

I =

∫

Ω

τS(l,v)E(l)dl

τS =

∫

S
w(p)kpρp(l,v)Up(l)Vp(l)Vp(v)nl nvdp

∫

S
w(p)Vp(v)nvdp

(3)

The last step to get an equation in terms of surface
maps is to rewrite I as an integral over the coarse
mesh, on which the maps are defined. This change of
variables yields the Jacobian dx = ng dp, which gives:

I =

∫

Ω

τA(l,v)E(l)dl

τA =

∫

A
w(x)kxρx(l,v)Vx(l)Vx(v)Ux(l)nl

nv
ng

dx
∫

A
w(x)Vx(v)

nv
ng

dx

(4)

This is the “pre-filtering equation” that we will con-
sider in the rest of this paper. It gives I as a function of
the texel values of the color, normal, BRDF, visibility,
shadow and environment maps kx, nx, ρx, Vx, Ux and
E(l) – with Vx often represented with an horizon map
(see Section 4). Note that the parallax offset is implicit
in this equation. Indeed, A is not the footprint of the
pixel on the coarse mesh, but is related to it via a
view-dependent offset (see Section 8.3 and Fig. 7).

The goal of the pre-filtering methods is to avoid
a numerical evaluation of (4) during rendering, over
all the texels x. Instead, the goal is to estimate I
directly from pre-filtered versions of the surface maps.
The problem is that (4) gives I as a non-linear and
non-separable function of the map texels. Thus, a
simple separate linear pre-filtering of each map is not
sufficient.
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Note that I includes a spatial integral over A, and a
directional integral over l. Thus, both the spatial maps
and the environment map E(l) should be pre-filtered
for efficient rendering. In this survey we restrict our-
selves to the pre-filtering of the spatial maps, i.e., to
the computation of τA. A survey of the environment
map pre-filtering methods can be found in [3].

2.2 Pre-filtering strategies

A first pre-filtering strategy is to store precomputed
or measured values of τA(l,v) in (4), for a large
number of view and light directions, and for many
footprints A of different sizes covering the coarse
mesh. The values can then be stored in a 6D table
called a Bidirectional Texture Function, or BTF [4].
Since this approach is directly based on the general
pre-filtering equation, it automatically takes into ac-
count the parallax offset and the correlation effects
that are modeled by this equation. It can also take
self inter-reflections and subsurface scattering effects
into account, although they were neglected in (4). The
main drawback of this approach is that it requires a
lot of memory: an uncompressed BTF represents gi-
gabytes of data. Several methods have been proposed
to acquire a BTF from real measurements [4], to create
a BTF from Monte-Carlo simulations on a geometric
surface model [5], and to compress BTFs into man-
ageable representations, in particular for interactive
rendering [5], [6], [7]. A survey of these methods can
be found in [8]. We do not discuss them here, nor
the closely related image-based rendering methods
assuming a fixed light or view direction such as [9],
[10]. They are out of our scope because they do not
propose algorithms to pre-filter maps used in a non-
linear way for rendering.

Another pre-filtering strategy is to assume that the
surface colors, normals, visibility and shadows are
uncorrelated, which is sometimes really the case (we
discuss the validity of this hypothesis in Section 8).
This hypothesis allows one to replace the τA term in
(4) with a product of simpler terms. Indeed, if two
variables a and b are uncorrelated in the sense that
∫

w(a−a)(b−b) = 0, with ā =
∫
wa∫
w

and b̄ =
∫
wb∫
w

, then

we have ab = a b. Applying this to the numerator in
(4) with the weight w = wnv

ng
we get:

I ≈
∫

Ω

kAρA(v, l)VA(v, l)UA(l)E(l)dl (5)

kA
def
=

∫

A
w(x)kx

nv
ng

dx
∫

A
w(x)nv

ng
dx

(6)

ρA(l,v)
def
=

∫

A
w(x)ρx(l,v)nl

nv
ng

dx
∫

A
w(x)nv

ng
dx

(7)

VA(l,v)
def
=

∫

A
w(x)Vx(l)Vx(v)

nv
ng

dx
∫

A
w(x)Vx(v)

nv
ng

dx
(8)

UA(l,v)
def
=

∫

A
w(x)Ux(l)

nv
ng

dx
∫

A
w(x)nv

ng
dx

(9)

In practice most methods use the following hypoth-
esis, most often implicitly. We discuss its validity in
Section 8.

Hypothesis 1: The surface maps are uncorrelated,
the parallax offset relating A to S can be ignored, as
well as the parallax Jacobian nv/ng.

We present in Sections 3, 4 and 5, respectively,
the pre-filtering methods to compute the average re-
flectance ρA, the average visibility VA and the average
shadow UA. Before that, we now recall the basic linear
pre-filtering methods that can be used with linear
parameters such as the surface color kA.

2.3 Linear pre-filtering

2.3.1 Hypotheses

The linear terms in the pre-filtering equation, such as
the color map kx, can be linearly pre-filtered if:

• the parallax offset, implicit in (6), is either null or
can be handled separately – see Section 8.

• the parallax Jacobian nv/ng is quasi constant
or uncorrelated with kx, and thus cancels when
moved outside both integrals in the fraction (6).

If these two hypotheses hold, the average color be-
comes a simple weighted average of the color map
kx over A:

kA ≈
∫

A

ŵ(x)kxdx with ŵ(x)
def
=

w(x)
∫

A
w(x)dx

(10)

Note that when the coarse mesh curvature is small
(g ≈ cste) the above hypotheses hold if the view is
nearly vertical (v ≈ g), or if the surface bumps are
small (n ≈ g).

2.3.2 Algorithms

The problem of pre-filtering a texture kx to efficiently
evaluate its weighted average kA in the footprint A
with (10) has been extensively studied.

The main problem is to approximate an almost
arbitrary footprint A with a finite number of prede-
fined footprints. A common solution is to use nested
footprints. MIP-maps [11] use predefined nested foot-
prints given by a quadtree. Summed Area Tables [12],
or SAT, use all the rectangles whose bottom left corner
is the one of the texture. They are more flexible than
MIP-maps but require floating point numbers (unlike
MIP-maps they do not store bounded averages, but
potentially unbounded sums – as the name implies).
Also their accuracy is orientation-dependent, yielding
annoying sharpness oscillations when the surface ro-
tates. Both methods compute kA with a small and con-
stant number of arithmetic operations. But they are
limited to a box filter w, with axis aligned square or
rectangle footprints. However, in general, a footprint
is trapezoidal or elliptical [1], not axis-aligned, and w
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Fig. 2. Normal map pre-filtering. Pre-filtering the
normals (black arrows) of a complex surface (bottom)
quickly gives an unnormalized average vertical normal
(blue) that does not accurately represent the surface
(e.g., seen from space an ocean looks flat but does
not reflect light like a mirror). Instead, the solution is to
pre-filter normal distribution functions, or NDFs (gray
lobes). The problem is then to find compact, accurate
and linearly interpolable NDF representations.

is a more complex filter less prone to aliasing than
the box filter. In this case, kA can be approximated by
using a (weighted) decomposition of A into a small
number of square footprints [13], [14], [15].

Some methods are now efficiently implemented in
hardware [14], [16]. It is therefore tempting to take
advantage of this hardware acceleration, even for
maps used in a non-linear way for rendering. This
is one of the reasons why the methods to pre-filter
these maps generally try to reformulate them in terms
of new parameters that can be linearly filtered.

3 NORMAL MAP PRE -FILTERING

The average reflectance ρA(l,v) in (7) can be com-
puted from a normal map. A normal map [17] is a
texture that stores a normal per texel. The main effect
of a normal map nx on the pre-filtering equation (4)
is to perturb the diffuse and specular reflections, via
its influence on the BRDF – we recall here that ρx(l,v)
is a shorthand for ρ(nx, . . . , l,v).

A normal map cannot be directly pre-filtered: the
average reflectance in a footprint A is not equal to
the reflectance due the average normal, because the
BRDF is non-linear. As shown below, a solution is
to pre-filter instead the probability distribution of
the normals, called a normal distribution function, or
NDF. The problem is then to find compact, accurate
and linearly interpolable NDF representations. Before
presenting the methods that have been proposed for
that, we present the hypothesis made by all these
methods, sometimes implicitly.

3.1 Hypotheses

The normal map pre-filtering methods [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], presented below,

start from Hypothesis 1. Then (7) becomes:

ρA(l,v) ≈
∫

A

ŵ(x)ρx(l,v)nl dx (11)

Then, the methods cited above assume that the 4D
BRDF ρx(l,v) has some symmetries allowing it to
be represented with a 2D function fx(h) of the half-
vector h between l and v. More precisely, they as-
sume, most often implicitly, that ρx has the following
separable form [25]:

ρx(l,v) = r(l,v)
fx(ν(l,v))

nl
(12)

where

• r(l,v) is a function independent of x and n, which
can represent, for instance, a Fresnel reflectance
coefficient R+ (1−R)(1− vh)5 [28];

• ν(l,v) is a function independent of x and n, which
generally represents the half-vector h (this is not
mandatory);

• fx(η) is a distribution function of micro-scale nor-
mals, such as microfacet normals in microfacet-
based BRDF models. This micro-scale NDF, or
µNDF, depends on x, at least via its normal: we
have fx(η) = f(nx, . . . ,η), with optional maps
defining at each point the tangent vectors, the
surface roughness, etc.

This general form is true, for instance, for the Lamber-
tian BRDF ρL = 1 and for the Blinn-Phong [29] lobe

ρBP = (nh)α

nl
. However, this is not true for many BRDF

models (see Section 3.3). The methods cited above can
now be divided into direct and convolution methods.

3.1.1 Direct methods

The advantage of the hypothesis used in (12) is that
the BRDF ρx, which was a non-linear function of the
normal map nx, is now given as a linear function
of the micro-scale normal distribution function fx(η).
The µNDF can thus be linearly pre-filtered:

fA(η)
def
=

∫

A

ŵ(x)fx(η)dx (13)

and the average reflectance ρA in (11) simply becomes
ρA(l,v) ≈ r(l,v)fA(h). The methods used to pre-filter
these µNDF are presented in Section 3.2.

3.1.2 Convolution methods

The convolution methods [23], [25] use the additional
hypothesis that the µNDF fx only depends on n,
i.e., that fx(η) = f(n,η). This allows them to replace
the integral over A in (13) with an integral using the
distribution function of the normals n in A. This NDF,
noted pA(η), is defined by the ergodicity equation:

∀ϕ,
∫

A

ŵ(x)ϕ(nx)dx =

∫

Ω

ϕ(η)pA(η)dη (14)
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Reporting (15) below in (14) shows that the NDF in
a footprint A is a weighted average of the NDFs at
each point x, which are Dirac distributions:

pA(η) =

∫

A

ŵ(x)px(η)dx, px(η)
def
= δ(η − nx) (15)

Then, by using (14) in (13) the µNDF in a footprint
A becomes the convolution of the punctual µNDF f
with the NDF pA in A:

fA(η
′) =

∫

Ω

f(η,η′)pA(η)dη (16)

The pre-filtering problem is thus decomposed in two
sub-problems: pre-filtering the NDFs pA, and comput-
ing the above convolution. In practice the convolution
methods [23], [25] assume that fx(η) = f(nη) – we
have fL = nη and fBP = (nη)α for the Lambert and
Blinn-Phong models, respectively. This restricts them
to uniform, isotropic BRDFs (while the direct methods
support anisotropic BRDFs varying with x).

3.1.3 Summary

The convolution methods pre-filter the NDF of the
macroscopic surface normals and convolve it with
a punctual µNDF to get the average µNDF in a
footprint. The direct methods pre-filter this average
µNDF directly. Both use symmetry hypotheses to
represent a 4D BRDF with a 2D µNDF. In both cases,
as said above, the pre-filtering problem is reduced
to the pre-filtering of NDFs. The problem is then to
find compact, accurate and linearly interpolable NDF
representations. We now present the existing solutions
to this problem.

3.2 Algorithms

The normal map filtering algorithms can be separated
in two groups: those using a single lobe to represent
a NDF, and those using multiple lobes.

3.2.1 Single lobe algorithms

Schilling [20] models the µNDF fA with a Gaussian.
He represents it with the 2 × 2 covariance matrix of
the micro-scale slopes, expressed in a tangent frame
aligned with n, the average micro-scale normal.
Because each µNDF is expressed in its own local
tangent frame, this representation cannot be linearly
MIP-mapped and interpolated.

Olano and North [21] model the µNDF fA with
a 3D Gaussian defined by its mean µ and its 3 × 3
symmetric covariance matrix Σ:

fA(η) ∝ exp

(

−1

2
(η − µ)TΣ−1(η − µ)

)

(17)

The advantage of this representation is that the best
3D Gaussian fit of a mixture of 3D Gaussians is
obtained by linear interpolation. More precisely the

mean µ and the second moments Σ + µµ
T of the best

Gaussian fit are linear interpolations of the means
and second moments of the input Gaussians (see
Section 7). Hence, usual MIP-mapping, bilinear and
trilinear interpolation methods can be used on these
9 parameters, before computing lighting with (17).
This method is thus very efficient. It also supports
anisotropic NDFs. The drawback is that a single
Gaussian cannot represent accurately µNDFs with
clearly distinct lobes.

Neyret [22] models the µNDF fA with the distri-
bution of the normals to an ellipsoid (his method is
designed for volumes but could be used as well for
surfaces). For an ellipsoid defined by the points p such
that pTQp = 1, this distribution function is:

fA(η) = det Q−1(ηTQ−1
η)−2 (18)

As with Gaussians, a mixture of such µNDFs is not a
µNDF of the same form, but it can be approximated
with such a µNDF, with a matrix Q−1 given by the
linear interpolation of the Q−1 matrices of the input
µNDF. Hence, these matrices can be linearly MIP-
mapped and interpolated. Since they are symmetric
and can be multiplied by a constant without changing
fA, this method requires only 5 parameters per texel.

Olano and Baker [27] model the µNDF fA with a
single Gaussian, as in Olano and North [21]. However,
here they use a 2D Gaussian in a tangent plane above
the surface:

fA(η) ∝ exp

(

−1

2
(η̃ − µ̃)TΣ−1(η̃ − µ̃)

)

(19)

where η̃ = [ηx ηy]
T / ηz . Since a common plane is used

for all the µNDFs, their first and second moments
µ̃ and Σ + µ̃µ̃

T can be linearly MIP-mapped and
interpolated. Here this gives only 5 parameters per
texel, because the Gaussians are 2D.

Toksvig [23] uses a convolution method (see Sec-
tion 3.1.2). He models the macroscopic NDF pA with
an isotropic Gaussian of the angular deviation from
the average normal. This requires 4 parameters for the
average normal µ and for the variance σ2. However,
Toksvig only stores µ, computed with a linear MIP-
mapping of the normal map. He then uses the norm
of this average normal to estimate the variance σ2: if
the norm is almost 1 this means that all the normals
n are almost aligned, and so that σ2 is almost 0.
Conversely, if the norm is less than 1, then σ2 is not
null. In practice, Toksvig uses σ2 ≈ (1 − ‖µ‖)/‖µ‖.
Then, in order to compute the convolution in (16), he
also approximates f , assumed here to be the Blinn-
Phong lobe (nh)α, with a Gaussian. This gives the
convolution of two Gaussians, which is itself a Gaus-
sian. The result is a Blinn-Phong lobe with a scaled
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down exponent α′, i.e., a wider lobe [23]:

fA(η) =
1 + α′

1 + α

(

µη

‖µ‖

)α′

with α′ def
=

α

1 + ασ2

3.2.2 Multiple lobes algorithms
Fournier [18], [19] represents the µNDF fA with a sum
of Blinn-Phong [29] lobes of the form:

fA(η) =
∑

k

ak(µkη)
αk (20)

He uses up to 7 lobes per texel, which gives
28 parameters per texel. Each level of the MIP-map
pyramid is not computed from the previous level, but
directly from the base level, using a non-linear least
square method to find the lobes that best fit the base
level NDFs. The ak, µk and αk parameters can not be
linearly interpolated. Thus, for rendering, Fournier
interpolates the lighting due to the neighboring texels.
This means evaluating (20) with 28 terms, or 56 terms
with trilinear filtering. This representation is quite
accurate but not very adapted for real-time rendering.

Tan et al. [24], [26] extend this approach. Instead
of Blinn-Phong lobes, they use a mixture of isotropic
Gaussian lobes to represent the µNDF:

fA(η) =
∑

k

ak exp
(

−‖η − µk‖2xy/σ2
k

)

(21)

They also improve the non-linear optimization phase
to ensure that the lobe directions µk and µ

′
k in any

two neighboring texels are as close as possible, for
each index k. Thanks to this “alignment” they can use
hardware bilinear or trilinear filtering to interpolate
the means µk and second moments σ2

k + ‖µk‖2 of
corresponding lobes, before using (21) to compute the
lighting. Tan et al. use 4 lobes per texel, which gives
12 parameters per texel. A drawback of this method
is that it is not always possible to align the lobes in
neighboring texels, for instance at sharp edges.

Han et al. [25] use a convolution method (see
Section 3.1.2). They model the macroscopic NDF pA
with its decomposition into spherical harmonics. This
gives plm coefficients that can be linearly MIP-mapped
and interpolated. Then, the spherical harmonics coef-
ficients of the µNDF fA are simply the spherical har-
monics coefficients of pA, times the zonal harmonics
coefficients fl of the µNDF fx. This gives:

fA(η) =
∑

l,m

flplmYlm(η)

Han et al. use up to 64 plm coefficients per texel. For a
Blinn-Phong exponent α, about 4(α+

√
α) coefficients

are needed. This limits this method to cases where
the µNDFs and the NDFs are low frequency (i.e., no
specular reflections, and NDF without narrow lobes).

In the other cases, Han et al. [25] model the macro-
scopic NDF pA with a mixture of von Mises-Fisher
(vMF) lobes:

pA(η) =
∑

k

ak
κk exp(κk µkη )

4π sinhκk

(22)

Like Tan et al. [24], they propose a non-linear opti-
mization method to find the lobes corresponding to
a NDF, and to align corresponding lobes in neigh-
boring texels (which is not always possible, as said
above). They can then interpolate their coefficients
(κk and µk do not interpolate linearly but ak and
ak(cothκk − κ−1

k )µk do). The result is:

fA(η) ≈
∑

k,l

akfl

√

2l+ 1

4π
exp

(

− l2

2κk

)

Yl0(µkη)

3.3 Discussion

Each algorithm is well adapted, under some hypothe-
ses, to a specific type of surface. Those using a single
symmetric lobe are well adapted, for instance, to
smooth isotropic surfaces (i.e., derivable and rotation
invariant surfaces). Those using a single asymmetric
lobe are well adapted to smooth anisotropic surfaces,
such as those made of micro-cylinders. Those using
multiple symmetric lobes are well adapted to surfaces
with sharp edges, resulting in a small number of
privileged normal directions, often found with manu-
factured surfaces. Methods using multiple asymmetric
lobes would be well adapted to a very large class of
surfaces, at the cost of higher memory needs.

However, all these algorithms share the same lim-
itations. Some are coming from the hypothesis that
correlations and parallax offsets or Jacobians can be
neglected. They are discussed in Section 8. The main
other limitation comes from the symmetry hypotheses
used to be able to represent a 4D BRDF with a 2D
µNDF, as in (12). Indeed, many realistic BRDFs do
not have this symmetry. For instance the geometrical
attenuation factor of the Cook-Torrance model [30], or
the normalization factor of the Ward model [31], ac-
counting for self-shadowing and self-masking effects
at the micro-scale, cannot be reduced via symmetries
to 2D functions. They cannot be included in the
r(l,v) term in (12) either, because they depend on n.
Hence, the above algorithms cannot be accurate for
grazing view or light angles, where self-masking and
self-shadowing become important (even if they were
correctly taken into account at the macro-scale A).

4 HORIZON MAP PRE-FILTERING

The average visibility VA(l,v) in (8), i.e., the propor-
tion of texels in the footprint A that are not masked or
shadowed by S itself, can be computed from an hori-
zon map. An horizon map [32] is a texture containing
in each texel the elevation angle of the horizon for
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Fig. 3. Horizon map pre-filtering. An horizon map
contains horizon elevation angles θ (black lines) for
each azimuthal direction φ (figure plane). It can be
used to compute the remote visibility of points on a
complex surface (bottom). Since visibility is a non-
linear function of these angles, an horizon map cannot
be linearly interpolated or pre-filtered. A solution is
to pre-filter horizon angle distributions, or HDF (gray
lobes). The problem is then to find compact, accurate
and linearly interpolable HDF representations.

each azimuthal direction. A point on the surface is
visible from a distant light if the light angle is greater
than the horizon angle, and hidden otherwise (see
Fig. 3). This can be used to compute self-shadows on
a complex surface (see Fig. 1).

An horizon map cannot be directly pre-filtered: the
average number of visible texels in a footprint cannot
be computed from their average horizon angles, be-
cause the visibility function is a non-linear function
of these angles. As shown below, a solution is to
pre-filter instead the probability distribution of the
horizon angles, called a horizon distribution function, or
HDF. The problem is then to find compact, accurate
and linearly interpolable HDF representations. Before
presenting the methods that have been proposed for
that, we present the hypothesis made by all these
methods, sometimes implicitly.

4.1 Hypotheses

The horizon map pre-filtering methods [18], [26] start
from Hypothesis 1. Then the average visibility VA,
given by (8), becomes:

VA(l,v) ≈
∫

A
w(x)Vx(l)Vx(v)dx
∫

A
w(x)Vx(v)dx

(23)

The visibility function Vx is initially represented
with an horizon map Θx(φ) (see Fig. 3):

Vx(v) = H(θv −Θx(φv)) (24)

where Θx(φ) is the horizon angle in azimuth φ, and
H is the Heaviside function. Several strategies are
used to model the azimuthal dependence of Θx. For
instance, using a fixed set of azimuthal directions
φ1, . . . , φn, with a piecewise linear interpolation [18],

[26], or a B-spline interpolation [33]. It is also possible
to fit the 2D curve (cosΘx(φ), φ) in polar coordinates
with an ellipse [34].

As said above, because the Heaviside function
in (24) is non-linear, the horizon map Θx(φ) can-
not be linearly pre-filtered. To solve this problem,
Fournier [18] and Tan et al. [26] reformulate this
equation by using an horizon distribution function, or
HDF, noted px(θ, φ) and equal to δ(θ −Θx(φ)):

Vx(v) =

∫ π
2

0

H(θv − θ)px(θ, φv)dθ (25)

The advantage of their reformulation is that the visi-
bility function Vx, which was a non-linear function of
the horizon map Θx, is now a linear function of the
HDF px. These distributions can thus be linearly pre-

filtered, using pA(θ, φ)
def
=

∫

A
ŵ(x)px(θ, φ)dx, in order

to compute the proportion of texels that are visible in

the footprint A, VA(v)
def
=

∫

A
ŵ(x)Vx(v)dx:

VA(v) =

∫ π
2

0

H(θv − θ)pA(θ, φv)dθ

=

∫ θv

0

pA(θ, φv)dθ

(26)

This gives a method to pre-filter the denominator of
(23). The same principles can be used for the numera-
tor, but then we get a 4D function pA(θ, φ, θ

′, φ′) equal
to

∫

A
ŵ(x)px(θ, φ)px(θ

′, φ′)dx. Encoding a 4D function
in each texel is very costly, so Fournier [18] and Tan
et al. [26] approximate (23) with an equation of the
form:

VA(l,v) ≈ V(VA(l), VA(v), l,v) (27)

This allows them to use only 1D HDF distributions
pA(θ, φi), i = 1 . . . n, while still being able to take
into account some correlation effects between l and
v in (23), discussed below. The problem is then to
find compact, accurate and linearly interpolable HDF
representations. We now present the existing solutions
to this problem.

4.2 Algorithms

Fournier [18] represents the HDF pA(θ, φi) for each
azimuth φi with its mean µA(φi) and standard devia-
tion σA(φi). As seen in Section 3, these parameters can
be linearly MIP-mapped and interpolated, by storing
the second moment instead of the standard deviation.
Fournier then uses these pre-filtered parameters to ap-
proximate (26) with a linear ramp going from VA = 0
for θv = µA − σA to VA = 1 for θv = µA + σA:

VA(v) ≈ clamp

(

θv − µA(φv) + σA(φv)

2σA(φv)
, 0, 1

)

He then uses an uncorrelation hypothesis to approx-
imate the proportion of texels in the footprint A that
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are both visible and illuminated, with the product of
the visible and illuminated texels proportions:

VA(l,v) ≈ VA(l)VA(v)

In practice Fournier uses 4 φi directions aligned with
the texture axis, which gives 8 parameters per texel (4
means and 4 second moments).

To address some correlations between normals and
visibility (see Section 8), Fournier proposes to use one
HDF per Blinn-Phong lobe (see Section 3). Then, for
pre-filtered, correlated normal and visibility maps, 84
parameters per texel are needed (28 for the 7 lobes,
plus 56 for the 7 occlusion maps)!

Tan et al. [26] also represent the HDF pA(θ, φi) for
each azimuth φi with its mean µA(φi) and standard
deviation σA(φi). This gives 2n parameters per texel
for n φ directions (Tan et al. do not give the value used
in their examples). However, they use more accurate
approximations than Fournier to compute (26) and
(23) from these pre-filtered parameters. First, they
assume that the HDFs pA are Gaussians. Then (26) can
be computed exactly with the erf function. Second,
they approximate (23) with:

VA(l,v) ≈
1

VA(v)

[

αmin
(

VA(l), VA(v)
)

+

(1 − α)max
(

VA(l) + VA(v) − 1, 0
)

]

(28)

where α = (1 + lv)/2. The min term corresponds
to the maximum possible fraction of A that can be
visible from both l and v. The max term corresponds
to the minimum possible fraction. The α term
interpolates between the two to account for greater
correlations when l and v are close (when l = v, VA(l)
and VA(v) are fully correlated). In particular, this
approximation correctly reproduces the hotspot effect,
which is the fact that when l and v are aligned all
the self-shadows are masked to the viewer, and then
all the visible areas are lit. Mathematically this means
that VA(l,v) should be equal to 1 when l = v. This
is easily checked on (23) and on (28), but this is not
the case with Fournier’s method. This approximation
also correctly reproduces the fact that if the area A is
fully lit, i.e., if VA(l) = 1, then VA(l,v) must be equal
to 1. Again, this is easily checked on (23) and on (28),
but this is not the case with Fournier’s approximation.

It should be noted here that Ashikhmin et al. [35],
in the context of BRDF models, propose a similar
approximation:

VA(l,v) ≈
βmin

(

VA(l), VA(v)
)

+ (1 − β)VA(l)VA(v)

VA(v)

where β is a Gaussian of the angle between l and
v. It is easy to check that this method also gives
1 when l = v (hotspot effect), and when the area
is fully lit. All above approximations correctly give

Fig. 4. Shadow map pre-filtering. A shadow map is a
depth map Zs (gray texels) of the scene from the point
of view of a light source. A point x is lit if its depth l(x) is
less than or equal to Zπ(x), where π(x) is the projection
of x in the shadow map. Performing this binary depth
test (blue numbers) on the coarsest linearly pre-filtered
depth value gives 0 here, instead of the correct result
5/8 (the average of the shadow test over the 8 base
texels) because the depth test is non linear. Shadow
map pre-filtering methods aim at solving this problem.

VA(l,v) = VA(l) when A is fully visible, i.e., when
VA(v) = 1.

Finally, we should also mention that among all the
papers that use precomputed visibility functions on
height fields, some use other representations that can
be linearly MIP-mapped and interpolated to compute
an average visibility over an arbitrary area (although
this was not the primary goal of the authors). This
is the case for instance of Nowrouzezahrai and Sny-
der [33]. Indeed, they decompose the Heaviside func-
tion in (24) on the linear basis of the normalized
Legendre polynomials P̂k, which gives:

Vx(v) =
∑

k

ak(Θx(φv))P̂k(cos θv) (29)

The advantage of this decomposition is that the vis-
ibility function Vx, which was a non-linear function
of the horizon map Θx, is now a linear function of
the basis coefficients ak(Θx). These coefficients can
thus be linearly pre-filtered to compute an average
visibility:

VA(v) =
∑

k

(
∫

A

ŵ(x)ak(Θx(φv))dx

)

P̂k(cos θv) (30)

5 SHADOW MAP PRE -FILTERING

The average visibility UA(l,v) in (9), i.e., the propor-
tion of texels in the footprint A that are not shadowed
by objects other than S, can be computed with many
methods: shadow volumes [37], shadow maps [38],
deep shadow maps [39], opacity shadow maps [40],
etc. A survey of these methods can be found in [41]
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VSM [36], 60 fps, 42 MB CSM [37], 21 fps, 170 MB ESM [38], 66 fps, 21 MB

Fig. 5. Shadow map pre-filtering algorithms. A complex scene rendered with a 2k×2k shadow map (from [36],
courtesy of Thomas Annen and Max-Planck Institute for Informatics). Exponential Shadow Maps (ESM) are
the most efficient, with better contact shadows than Convolution Shadow Maps (lower closeups) and less light
leaking than Variance Shadow Maps (top closeups).

and [42]. Here we consider only the case of shadow
maps [38], for which non-linear pre-filtering methods
are needed, and have been proposed. A shadow map
is a depth map of the scene, computed from the point of
view of a punctual light source. Then, a binary depth
test suffice to compute shadows: a point x is lit by this
source if and only if its depth is less than or equal to
the depth stored in the shadow map (see Fig. 4).

A shadow map cannot be directly pre-filtered: the
average number of lit texels in a footprint A cannot
be computed from their average depth, because the
depth test is a non-linear function of these depths.
As shown below, one solution is to pre-filter instead
the probability distribution of these depths, that we
call here a depth distribution function, or ZDF. The
problem is then to find compact, accurate and linearly
interpolable ZDF representations. Before presenting
the methods that have been proposed for that, we
present the hypothesis made by all these methods,
sometimes implicitly.

5.1 Hypotheses

The shadow map pre-filtering methods [36], [43], [44],
[45], presented below, start from Hypothesis 1. Then
the average visibility UA, given by (9), becomes:

UA ≈
∫

A

ŵ(x)Uxdx (31)

where we dropped l (for a punctual light source l only
depends on x, and so Ux(l(x)) can be noted Ux). When
using shadow maps, Ux is not stored explicitly, and
so cannot be directly pre-filtered with (31). Instead, it
is represented with a binary depth test applied to a
depth map Zs. More precisely, by noting l(x) and π(x)
the depth of x and its projection in the shadow map,
respectively (see Fig. 4), Ux is computed with:

Ux = Uπ(x)(l(x)) with Us(d)
def
= H

(

Zs − d
)

(32)

and (31) becomes UA ≈
∫

A
ŵ(s)H

(

Zs− l(x)
)

ds, where
A is the projection of the footprint A in the shadow

map. The l(x) term in this equation prevents any
pre-filtering of the shadow map alone. To solve this
problem the shadow map pre-filtering methods as-
sume that l(x) can be approximated with its average
l, which gives:

UA ≈ UA(l) UA(d)
def
=

∫

A

ŵ(s)H
(

Zs − d
)

ds (33)

Still, as said above, because the Heaviside function in
(32) and (33) is non-linear, the depth map Zs cannot
be linearly pre-filtered. To solve this, one solution is
to use depth distribution functions, or ZDF. We present
this method and other solutions below.

5.2 Algorithms

Donnely and Lauritzen [43] reformulate (32) by using

the ZDF ps(z)
def
= δ(z − Zs):

Us(d) =

∫ ∞

0

H(z − d)ps(z)dz (34)

The advantage of their reformulation is that the vis-
ibility function Us, which was a non-linear function
of the depth map Zs, is now a linear function of
the ZDF ps. These distributions can thus be linearly

pre-filtered, with pA(z)
def
=

∫

A
ŵ(s)ps(z)ds, in order to

compute the proportion of texels that are lit in A:

UA(d) =

∫ ∞

0

H(z − d)pA(z)dz

=

∫ ∞

d

pA(z)dz

(35)

Then, Donnely and Lauritzen represent the ZDF pA(z)
with its first and second moments µA and σ2

A + µ2
A,

which can be linearly MIP-mapped and interpolated,
as we have already seen in previous sections. Finally,
they use Chebychev’s inequality to approximate UA

with its upper bound (this choice gives the exact result
for a planar occluder parallel to the surface):

UA(d) ≈ Umax
A (d) =

σ2
A

σ2
A
+ (d− µA)2

if d > µA, else 1
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This gives anti-aliased hard shadows with only two
values per shadow map texel. The main drawback
is that light bleeding (i.e., wrongly lit areas inside
shadows) can occur when the variance σ2

A
is high.

Annen et al. [44] decompose the Heaviside function
H(z − d) in (32) by using a basis of Bk(z) functions.
This can be seen as a decomposition, for each d, of a

function Hd(z)
def
= H(z− d). Then the basis coefficients

depend on d, which gives:

H
(

Zs − d
)

=
∑

k

ak(d)Bk

(

Zs

)

(36)

The advantage of their decomposition is that the
visibility function Us, which was a non-linear function
of the depth map Zs, is now a linear function of
the Bk(Zs) coefficients. These coefficients can thus be
linearly pre-filtered:

UA(d) =
∑

k

ak(d)

(
∫

A

ŵ(s)Bk

(

Zs

)

ds

)

(37)

In practice Annen et al. decompose the Heaviside
function with its Fourier series. This gives an expres-
sion with the form expected in (36):

H(Zs − d) =
∑

k

ck exp

(

2iπk

T
(Zs − d)

)

=
∑

k

ck exp

(

−2iπk

T
d

)

exp

(

2iπk

T
Zs

)

Annen et al. use 16 coefficients, which gives 16
parameters per shadow map texel. This is not
sufficient to avoid artifacts due to ringing (Gibbs
phenomenon), but they propose scaling and offsetting
methods to reduce these artifacts. This method can
be extended to support soft shadows [46].

In another paper [36], Annen et al. reuse the idea of
decomposing H in separable terms of d and z. Instead
of using a Fourier series, they simply approximate H
with an exponential (Salvi [47] uses the same idea).
Indeed, for c ≫ 1, exp(cx) has a very steep slope near
x = 0 and quickly tends towards 0 for x < 0, like the
step function H . This gives:

H
(

Zs − d
)

≈ exp
(

c(Zs − d)
)

= exp(−cd) exp(cZs)

Here again, the advantage of this approximation is
that the visibility function Us becomes a linear function
of exp(cZs). These warped depths can thus be linearly
pre-filtered, unlike the depth map Zs itself:

UA(d) ≈ exp(−cd)

(
∫

A

ŵ(s) exp(cZs)ds

)

(38)

This gives anti-aliased hard shadows with only one
parameter per shadow map texel. The problem of this
approximation is that it diverges for d < Zs. Annen
et al. propose some solutions to fix this. Lauritzen

Fig. 6. Procedural map filtering. The color of the com-
plex surface S (bottom) can be described procedurally
with the analytical function f(x) = ⌊2x⌋ ÷ 2 (middle),
using f brown+ (1− f) green. The average color in the
footprint A can be computed efficiently by using the
indefinite integral F (x) = 1

2⌊x⌋ + max(x − ⌊x⌋ − 1
2 , 0)

(top), with
∫ b

a
f(x)dx = F (b) − F (a) (assuming ŵ is a

box filter).

and McCool [45] propose to combine this exponential
warping with its negative counterpart − exp(−cZs),
together with Chebychev’s inequality [43]. This so-
lution avoids the divergence problem, but requires
4 parameters per shadow map texel – first and sec-
ond moments for the warped ZDFs exp(cZs) and
− exp(−cZs).

6 PROCEDURAL MAP FILTERING

In the previous sections the maps were stored explic-
itly in textures. It is also possible to use procedural
maps evaluated on the fly during rendering. These
maps cannot be pre-filtered before rendering, other-
wise they would no longer be procedural. Still, since
they have an explicit analytical form, it is possible
to approximate their low-pass filtering analytically to
get an efficient anti-aliased rendering, without using
multisampling. In this section we review the methods
that have been proposed for that, for the case of
procedural color and normal maps (we are not aware
of any procedural horizon map or procedural shadow
map filtering methods).

6.1 Procedural color map filtering

Three main classes of methods have been proposed
for the case of procedural maps whose values are
used linearly to compute final pixel colors. They are
explained below, through the example of procedural
color maps. The first two methods can be used with
arbitrary procedural functions, called shaders [48],
using conditional statements, loops, function calls,
arbitrary mathematical functions, and even textures.
The third method is specific to shaders using spectral
synthesis [49], [50].
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6.1.1 Global fading

This method progressively blends the procedural
color with a constant color equal to its average [49],
[50]. The blending starts when the size of the low-pass
filter ŵ becomes larger than the smallest features of
the procedural texture (i.e., when the apparent size
of these features becomes smaller than a pixel). This
method can be used either on the output of the whole
shader, or only on some parts (a function, a sub
expression in a function, etc). However, this method is
not very accurate nor very effective: it attenuates all
the frequencies at once, instead of filtering only the
frequencies above the filter’s cutoff frequency. On the
other hand, this method can be automated thanks to
its simplicity [51], [52].

6.1.2 Analytic integration

A much more accurate and more effective method is
to use the indefinite integral F of the color function
f [49], [50]. Then a filtered version of this function
with a box filter can be efficiently computed, with
∫ b

a
f(x)dx = F (b) − F (a) (see Figure 6). The problem

is that it is almost always impossible to find the
indefinite integral F . Another problem is that the box
filter is not ideal.

For instance, even a simple 2D grid pattern, which
can be described with the product f(x)f(y), with f a
pulsetrain function f(x) = ⌊2x⌋ ÷ 2 (see Figure 6), is
really hard to filter exactly with this method, even with
a box filter (due to perspective projection, the filter
support becomes an arbitrary quadrilateral in the xy
space). In these cases, a simple but often very effective
approximation is to apply the method on each term
of the procedural function (this is an approximation
because these terms are generally combined non-
linearly in the final result). In the above example, the
2D filtering integral is reduced to a product of two 1D
integrals which are easy to compute (see Figure 6). A
frequent use of this method is to replace step functions
with filtered versions to anti-alias sharp edges (the
built-in GLSL smoothstep function is done for that).

6.1.3 Frequency clamping

The third method is specific to the case where the
color function f is an explicit sum of terms with a
band limited spectrum. This is the case for instance
when summing sinusoids, or with Perlin noise [53]
(which is not strictly band limited, but other noise
functions are [54]). In this case an approximate filtered
function can be obtained by clamping the sum to the
terms whose frequency is less than the low-pass filter
cutoff frequency, and by progressively attenuating the
others to avoid popping [49], [50], [55].

This method works well with a basic sum of terms
f(x) =

∑

i bi(x). In many cases however, f is used in a
color lookup table c to get the final pixel color. When c
is not linear, the average final color

∫

A
ŵ(x)c(f(x))dx

is not equal to c(
∫

A
ŵ(x)f(x)dx). To solve this prob-

lem, Hart et al. [56] use the following approximation:

∫

A

ŵ(x)c(f(x))dx ≈ 1

f1 − f0

∫ f1

f0

c(α)dα (39)

where f0 and f1 are two samples of f on the boundary
of A (this corresponds to the hypothesis that f varies
linearly between f0 and f1 in A). The right hand
side is then evaluated with a pre-filtered lookup table,
either using MIP-maps or SATs. Worley [57] proposes
an extension to this method using more samples of f
to get more accurate results. Bergner et al. [58] use a
spectral analysis to tackle this problem.

More generally, it is frequent to compose f , or each
of its term bi, with arbitrary functions g or gi. For
instance, Musgrave [59] uses f(g(x)) to distort a noise
pattern f . Perlin [60] uses g(f(x)) to distort a density
field g, and f(x) =

∑

i |bi(x)| to get a turbulence
pattern. These extensions often add high frequencies
to f , and the frequency clamping method must be
adapted to account for this. However, we are not
aware of any generic algorithm for doing that.

6.2 Procedural normal map filtering

In most cases the procedural normal maps, used for
instance in water shaders, are simply filtered with
the methods of Section 6.1 to get an average normal,
which is then used directly in the BRDF for final
rendering. This is the case for instance of Hinsinger
et al. [61]. This strategy removes aliasing but gives a
wrong illumination, because the BRDF is not linear
(see Section 3).

In order to solve this problem, van Horn et al. [62]
propose an automatic method to convert a procedural
shader, applied to a given object, into what they call
reduction maps. These maps are ordinary textures,
which can be MIP-mapped, containing at each point
a compact description of the surface BRDF and a
distribution of normals (represented with Olano’s
method [21] – see Section 3). These BRDFs and NDFs
are computed with a stochastic sampling of the proce-
dural shader, during a preprocessing pass. However,
van Horn et al. only use a normal distribution to
decide if its average normal can be used directly for
rendering (i.e., if the distribution is very narrow). If
not, they resort to multiple sampling of the original
procedural shader to filter it.

Bruneton et al. [63] propose a specific solution for
the ocean case. Their idea is to compute not only an
average normal, but also a NDF, in order to com-
pute the BRDF corresponding to the details filtered
out from the procedural normal map. They model
the ocean surface with an explicit sum of trochoids
with well defined frequencies. Then they compute an
anti-aliased average normal by clamping this sum to
the frequencies smaller than the cut-off frequency of
the low-pass filter, as in [61]. In addition, they use
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the clamped frequencies to compute the variance of
the distribution of normals corresponding to these
frequencies. They finally use this variance to control
the size of the lobe of the BRDF model used for final
rendering. In this way, no details are lost due to the
filtering, and a correct lighting is obtained at the end.

7 GENERIC TOOLS

All the methods presented in Sections 3, 4 and 5 seem
to use quite similar tools to pre-filter maps used in
non-linear functions. We show here that three generic
tools can be extracted from these methods, and we
discuss their advantages and drawbacks. We start
with a formal definition of the pre-filtering problem
for non-linear functions.

7.1 Problem statement

We consider a function f of some spatially varying
parameters m, whose values are defined in a map
Mx. Each texel of this map can contain several at-
tributes, such as a color and a normal, which may be
correlated. The function f may also depend on other,
non spatially varying parameters, denoted by the
vector y. By definition, these additional parameters
are uncorrelated with the map values. For instance, y
can represent view and light directions. As a concrete
example, for uncorrelated normal maps, horizon maps
and shadow maps we have, respectively:

f = ρ(nx,η) Mx = nx y = η = ν(l,v)

f = H(θv −Θx) Mx = Θx y = θv

f = H(Zs − d) Ms = Zs y = d

We suppose that f is a non-linear function of its
spatially varying parameters, such that the average

fA(y)
def
=

∫

A
ŵ(x)f(Mx,y)dx is not equal to f(MA,y),

the value of f on the averaged parameters, defined by

MA
def
=

∫

A
ŵ(x)Mxdx. We also suppose that we cannot

or do not want to store f in a precomputed table. For
instance, if y has n components, an n+2 dimensional
table is required to store f , which may exceed the
available memory. Instead, we want to compute the
average value of f in a footprint A from a pre-filtered
map. The problem is that the Mx map cannot be
linearly pre-filtered, because f is a non-linear function
of its m parameters.

7.1.1 Direct methods
As can be seen from Sections 3, 4 and 5, a general
solution to the above problem is to reformulate f as
a linear function, i.e., to use a “change of variables”
such that f becomes a linear function of the new
variables. Indeed, if f(Mx,y) can be rewritten as a
linear function g(Kx,y) of some new parameters k,
then the average value of f in a footprint A can be
computed from the linearly pre-filtered Kx map:

fA(y) = g(KA,y), with KA
def
=

∫

A

ŵ(x)Kxdx (40)

The problem is then to find a linear reformulation
of f . For this, note that the relation fA(y) = g(KA,y)
above indicates that KA should somehow characterize
the function fA (because these two terms are the only
ones depending on A). In other words, KA is a func-
tion of fA: KA = K(fA). Then the linearity of g implies
that K is linear: K

(∫

A
ŵ(x)fxdx

)

=
∫

A
ŵ(x)K(fx)dx.

This means that, in order to find a linear reformula-
tion of f , it is necessary (but not sufficient) to find
linear parameters characterizing the functions fA. We
present three generic methods for doing that in the
next sections.

7.1.2 Convolution methods
A generic method to reformulate f as a linear function
is to introduce the probability distribution of its m

parameters, that we call here a parameter distribution
function, or PDF, noted px(m) = δ(m−Mx):

f(Mx,y) = g(px,y)
def
=

∫

M

f(m,y)px(m)dm (41)

where M is the range of m (Ω for normals, [0, π
2 ]

for horizon angles, [0,∞[ for depths, etc). The re-
formulated function g, which can be seen as a con-
volution, is now a linear function of the PDF. These
distributions can thus be linearly pre-filtered, with

pA(m)
def
=

∫

A
ŵ(x)px(m)dx, to compute the average of

f in a footprint:

fA(y) = g(pA,y) =

∫

M

f(m,y)pA(m)dm (42)

The only problem is that the PDF is a function: it
cannot be stored directly in a map like a scalar or
a vector. The solution is to store linear parameters
characterizing this distribution, using the same tools
as for the direct methods above, which are presented
in the next sections.

7.1.3 Summary
In order to pre-filter a map used in a non-linear
function f the generic solution is to use a different map
containing new, linear parameters. These parameters
should characterize either the average function, or
the distribution of its parameters. The first method
gives the average function directly, while the second
one requires the computation of a convolution (this is
more complex but f can then be changed at runtime).

We now review three generic tools to characterize
a function with linear parameters, which have been
used in the surveyed papers: using moments, linear
bases, or spanning sets. Each tool can be used directly
or via a convolution.

7.2 Using moments

A first method to characterize a function ϕ with linear
parameters k is to use its moments:

k =

[
∫

ϕ(y)dy,

∫

ϕ(y)ydy,

∫

ϕ(y)yyT dy, . . .

]T
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This can be used both with the direct and convolution
methods.

7.2.1 Direct method
The direct method uses the moments of the average
function fA(y), which can be linearly MIP-mapped
in a map KA. The reformulated function g is then
chosen such that g(KA,y), seen as a function of y,
has moments KA.

This method has been used for normal maps, with 2
moments and with g Gaussian [21], [27] (see (17) and
(19) in Section 3). In this case the 0th moment is not
needed: it is always 1 because here fA is a probability
distribution.

7.2.2 Convolution method
The convolution method uses the moments of the
PDF pA(m), which can be linearly MIP-mapped in
a map KA (the 0th moment is not needed: it is
always 1 because pA is a probability distribution). The
reformulated function g is then obtained by replacing
pA with a function of moments KA in (42).

This method has been used for normal maps [23],
with one moment (the second one being deduced
from the first) and g Gaussian (as shown by the
similarity between (42) and (16) in Section 3). It has
also been used for horizon maps [18], [26], with 2
moments (see the similitude between (42) and (26) in
Section 4). Finally, it has also been used for shadow
maps [43], [45], with 2 moments and with g the upper
bound of (42) over all PDF of moments KA (compare
(42) with (35) in Section 5).

7.2.3 Discussion
In practice, all the methods approximate fA with a
Gaussian having the same first and second moments
as fA. If y (or m for the convolution method) has n
components, then n first moments and n(n+1)/2 sec-
ond moments must be stored per texel (which gives a
total of 2, 5 and 9 parameters for n ≤ 3). Alternatively,
if off-diagonal elements in the second moment matrix
can be neglected, then only 2n parameters are needed.
Thus, the advantage of using moments is that it does
not require a lot of memory. The drawback is that
a single Gaussian lobe is insufficient to accurately
represent distributions with several lobes (see Fig. 2).

7.3 Using a basis of functions

Another solution to characterize a function with linear
parameters is to use the coefficients of its decompo-
sition in a basis of functions. This can be used both
with the direct and convolution methods.

7.3.1 Direct method
Seeing f as a set of functions ϕy(m) indexed by y,
the idea is to write each ϕy as a linear combination
of some functions Bk(m). This gives coefficients ak

depending on the index y, and so the average of f
fA(y) =

∫

A
ŵ(x)f(Mx,y)dx becomes:

fA(y) =
∑

k

ak(y)

(
∫

A

ŵ(x)Bk(Mx)dx

)

(43)

We then get a linear characterization of fA with the

parameters k
def
= [. . . Bk(m) . . .]T . The function g is

obtained by truncating the above sum to a finite num-
ber of terms. Symmetrically, instead of using Bk(m)
functions, we can also write f as a linear combination
of Bk(y) functions:

fA(y) =
∑

k

(
∫

A

ŵ(x)ak(Mx)dx

)

Bk(y) (44)

We then get a linear characterization of fA with the

parameters k
def
= [. . . ak(m) . . .]T .

This method has been used for horizon maps, with
Legendre polynomials [33] (compare (44) with (30) in
Section 4). It has also been used for shadow maps,
by using a decomposition of f in Fourier series [44]
(compare (43) with (37) in Section 5).

7.3.2 Convolution method
The convolution method applies this decomposition
in a basis of functions to the PDF. For instance, with
(44) we get:

pA(m) =
∑

k

(
∫

A

ŵ(x)ak(Mx)dx

)

Bk(m) (45)

which can then be reported in the convolution (42) to
get the average function fA.

This is the method used by Han et al. [25] when
they use as k parameters the spherical harmonics
coefficients plm of pA, and when they use their prop-
erties to efficiently evaluate the convolution in (42)
(compare (42) with (16) in Section 3).

7.3.3 Discussion
The advantage of using a basis of functions is sim-
plicity. The drawback is that it is impractical to use
this method when f has high-frequencies, especially
on GPU, due to the large number of coefficients to
handle. This is the case of the Heaviside function for
horizon and shadow map filtering, and this explains
why Annen et al. [44] had to use scaling and offsetting
tricks. This is also the case with highly specular
BRDFs, and this is why Han et al. [25] propose another
method than spherical harmonics for these cases.

7.4 Using a spanning set of functions

A third solution to characterize a function with linear
parameters is to use a spanning set1 of functions in-
stead of a basis. Indeed, it can be noted from (43) and

1. {e1, e2, . . .} is a spanning set if any vector can be decomposed
into a sum x1e1 + x2e2 + . . .. If this decomposition is unique, the
spanning set is a basis.
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(44) that these equations remain linear even if the Bk

functions do not form a basis. For instance, Annen et
al. [36] use (43) with a single function B(m) = ecz (and
a(y) = e−cd – compare (43) with (38) in Section 5).
Conversely, it is possible to use an infinite set of
functions Bk, indexed by a continuous variable k,
such as the set of all Gaussian functions or “lobes”
indexed by their moments. It is then possible to use
a sparse representation:

ϕ(y) ≈
n
∑

i=1

aiBki
(y), with n small (46)

where the indices ki must now be stored explicitly, in
addition to the “basis” coefficients ai.

7.4.1 Direct method
The direct method uses this decomposition on the
average function fA. This method has been used for
normal maps, with Bk functions represented with
Blinn-Phong lobes [18] or with isotropic Gaussian
lobes [24], [26] (compare (46) with (20) and (21) in
Section 3).

7.4.2 Convolution method
The convolution method uses this decomposition on
the PDF pA, which is then reported in the convolution
(42) to get the average function fA. This is the method
used by Han et al. [25] when they decompose pA
with a small set of von Mises Fisher lobes, which they
further decompose into zonal spherical harmonics to
efficiently compute the convolution of (42) (compare
(46) with (22) in Section 3).

7.4.3 Discussion
The advantage of using a spanning set of functions
is that, in general, only a few terms are necessary
to represent a function ϕ accurately, even if it has
high frequencies (e.g., narrow lobes). Although now
the indices ki must be stored in addition to the
“basis” coefficients ai, this generally gives more ac-
curate results, for the same number of parameters,
than using a basis of functions. Another advantage is
that it is generally possible to get better interpolation
methods (for instance to have lobes rotating between
two configurations, instead of a simple crossfading
yielding ghosting artifacts).

A first drawback of this approach is that a costly
non-linear optimization is generally necessary to de-
compose a function in such a way [18], [24], [25], [26],
whereas simple dot products would suffice to find its
coefficients in an orthonormal basis. This is a problem
to pre-filter a map in real-time (which is necessary for
shadow maps, for instance).

The second drawback is that two neighbor foot-
prints A and A′ will generally use different “basis”
functions BkA,i

6= BkA′,i
. Therefore, in general, the co-

efficients aA,i and aA′,i and the indices kA,i and kA′,i

cannot be linearly averaged or interpolated. This is
why Fournier [18] does not MIP-map nor interpolate
them, but instead interpolate the values given by (46)
for each texel (which is costly). Still, in specific cases
this interpolation is justified. For instance, if Bk is a
Gaussian of moments k [24], [26]. But this is accurate
only if kA,i and kA′,i are close, i.e., if the “lobes”
are aligned [24], [25], [26]. And this alignment is not
always possible, for instance at sharp edges.

In summary, when high frequencies (e.g., narrow
lobes) are expected it is generally preferable to use a
spanning set of functions. When no a priori informa-
tion is available, using a basis of functions is generally
the best choice.

8 DISCUSSION

The methods presented in Sections 3, 4 and 5 used
several simplifying assumptions: they assumed that
the surface features were uncorrelated, they ignored
inter-reflections and subsurface scattering, they ne-
glected the parallax offset and the parallax Jacobian,
the silhouettes and the curvature of the coarse mesh
A, etc. In this section we discuss the validity of these
hypotheses and present the few papers that try to
avoid them: we address correlations, inter-reflections,
parallax, curvature and mesh pre-filtering respectively
in Sections 8.1 to 8.5.

8.1 Correlations

The methods in Sections 3, 4 and 5 assumed that color,
reflectance, visibility and shadows were uncorrelated
(see Section 2.2). We show here that correlations are
in fact quite common, by using five examples, in
Sections 8.1.1 to 8.1.5: how correlations can occur
in small footprints, between color and reflectance,
between color and visibility, between reflectance and
visibility, and between view and light visibility. We
also illustrate the effects of these correlations, and we
present the few papers that try to address them (the
BTF models and some BRDF models consider them,
but they are out of our scope – the pre-filtering of
maps used non-linearly for rendering).

8.1.1 Small footprints

In a footprint with n texels, the correlation between
two maps ax and bx whose texel values are ai and bi
is

∑

i(ai− ā)(bi− b̄), with ā =
∑

i
ai

n
and b̄ =

∑
i
bi

n
. For

two texels this gives 1
2 (a1 − a2)(b1 − b2). This shows

that the correlation is never 0 in this case, unless a
or b is constant. Thus for small footprints two maps
are very unlikely to be uncorrelated. Here a possible
solution to this correlation problem is to use multi-
sampling instead of pre-filtering when n is too small
(the overhead will be bounded by construction).
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8.1.2 Color and reflectance

Correlations between color and reflectance frequently
occur, for instance, with surfaces made of several
materials, each material having its own color and
reflectance (e.g., dirt or oxidation on a metal). The
effects of these correlations are easy to see on an
example. For instance, consider a complex surface S
like the one in Fig. 2, with very dark bumps and
very bright flat areas, each covering one half of S.
For vertical view and light directions, the color kx and
the reflectance ρx(l,v) at some wavelength λ could be
k1 = ρ1 = 0.1 and k2 = ρ2 = 0.9 respectively for the
dark and bright parts. The correct pixel intensity I is
1
2 (k1ρ1+k2ρ2) = 0.41, but the intensity computed with
the uncorrelation hypothesis is completely different:
1
4 (k1 + k2)(ρ1 + ρ2) = 0.25.

This shows that these correlations can have im-
portant effects. Most of the normal map filtering
methods can be extended in a straightforward way
to handle them: it suffices to pre-filter the product
of the NDF with each color channel, instead of the
NDF alone. With RGB colors this gives three NDFs
per texel instead of one, and therefore three times
more parameters per texel. However, these weighted
NDFs are no longer normalized probability distribu-
tions, which is a problem for the methods using this
property (like Toksvig’s method [23]). Also the NDF
fx, now multiplied by kx, is no longer a function of n
alone. This is a problem for the convolution methods,
which use this hypothesis (see Section 3.1.2 – Han
et al. [25] propose an extension to their method to
support color maps, but this extension assumes that
colors are uncorrelated with normals).

8.1.3 Color and visibility

Correlations between color and visibility2 frequently
occur, for instance, with rough surfaces whose hills
and valleys have different colors (e.g., due to weath-
ering). The main effect of these correlations is that
the average surface color becomes view and light
dependent. For instance, the average color of the
complex surface in Fig. 2 is the average between green
and brown for a vertical view, and pure green for
a grazing view (because then the brown parts are
masked – see Fig. 9). Similarly, the brown part is
totally self-shadowed at grazing light angle, resulting
in a mostly green average color. Of course, these
correlation effects only happen when self-masking or
self-shadowing occur, i.e., for “grazing” view or light
directions. However, these “grazing” angles can be
quite large (e.g., 45◦ for ∧-shaped bumps) and so these
correlations are not uncommon.

Wu et al. [64] use characteristic points on S to
handle these correlations in offline renderings, at the

2. For RGB-A maps storing color and “visibility” (coverage) the
solution is to pre-filter the product, i.e., to use pre-multiplied alpha.

price of huge memory requirements (thousands of
bytes per texel).

8.1.4 Reflectance and visibility

Correlations between reflectance and visibility fre-
quently occur, for instance, with rough surfaces whose
hills and valleys have different reflectances (e.g., due
to weathering). As with colors, the main effect of these
correlations is that the average surface reflectance,
i.e., the NDF, becomes view and light dependent
(many diffuse materials become specular at grazing
angles). For instance, if the bumps of the complex
surface in Fig. 2 have a diffuse reflectance, while
the flat areas are purely specular, then the specular
component disappears for grazing view angles (be-
cause then the flat areas are masked). Again, these
correlation effects only happen when self-masking or
self-shadowing occur, i.e., for “grazing” view or light
directions, but these “grazing” angles can be quite
large, e.g., with ∧-shaped bumps.

The pre-filtering method proposed by Fournier [18],
[19] can handle these correlation effects with a low
precision, at the price of huge memory requirements
(see Section 4). Max and Becker [65] get view depen-
dent normal distributions by using a precomputed
redistribution function, transforming the normal dis-
tribution for a vertical view into the distribution of
normals in some other view direction (taking self-
masking into account). Wu et al. [64] can also handle
these correlations in offline renderings, at the price of
huge memory requirements.

8.1.5 View and light visibility

Visibility from the light and from the viewer become
totally correlated when the view and light directions
are the same. In this case self-shadows are masked
from the viewer, which gives a brighter hotspot in the
part of the image where both directions are aligned.

As shown in Section 4, there are some methods
to approximate the 4D bidirectional visibility V (l,v)
function by using only the 2D visibility function V (v).
These methods reproduce a hotspot effect, but they
remain approximations.

8.2 Inter-reflections and subsurface scattering

The methods in Sections 3, 4 and 5 ignored the inter-
reflections of the incident light between the surface
bumps inside the footprint area A. However, these
inter-reflections can have an important effect for sur-
faces with a high albedo, or with ∧-shaped bumps.
Without them the surface appears darker than in
reality. We also ignored subsurface scattering that
could occur inside this footprint. This effect is impor-
tant for translucent materials: it makes bumps appear
smoother by reducing the contrast between parts that
are directly lit or not.
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We are not aware of any non-linear pre-filtering
method taking these effects into account. There are
several methods to simulate inter-reflections in height
fields, such as [33], [34], [66]. However, these methods
compute the inter-reflections at each frame, they do
not pre-filter them. Inter-reflections are sometimes
explicitly taken into account in analytical and nu-
merical BRDF models, as in [67] or [68]. Here the
inter-reflections are pre-filtered, but only for the scales
where the individual bumps are no longer visible. The
smaller scales, for which maps used non-linearly for
rendering would be needed (such as a bump map),
and which are in the scope of our survey, are not
addressed. Subsurface scattering has also been repre-
sented with an extended BRDF, called a BSSRDF [69].
But here again, the fine scales for which maps used
non-linearly for rendering would be needed are not
addressed.

8.3 Parallax offset and Jacobian

The methods in Sections 3, 4 and 5 ignored the view-
dependent parallax offset between A and S. They
also ignored the parallax Jacobian nv

ng
. We discuss the

validity of these hypotheses in the next two sections.

8.3.1 Parallax offset
We argue here that the parallax offset can be handled
separately from the pre-filtering problem. Indeed,
pre-filtering a map to quickly compute its average
value on arbitrary footprints A is independent of the
method used to compute A.

More precisely, surface bumps whose apparent size
is much larger than a pixel can be represented by
the underlying coarse mesh on which the maps are
defined. The parallax offset is then automatically
taken into account during the projection of this mesh
on screen. Conversely, surface bumps whose size is
much smaller than the footprint area A do not give
any visible offset. This leaves the case of surface
bumps whose size is of the order of A. In this case
the pixel footprint A0 on the coarse mesh may not
correspond to the correct footprint that must be used,
i.e., the orthogonal projection A on the coarse mesh
of the pixel footprint S on the complex surface (see
Fig. 7). However, computing A is independent of
evaluating pre-filtered maps in A. Hence, the paral-
lax offset can be ignored when pre-filtering complex
surface maps, and treated separately during render-
ing. In fact, several methods have been proposed to
evaluate this parallax offset, such as Displacement
Mapping [70], Relief Mapping [9], [71] and Parallax
Occlusion Mapping [72]. However, these methods
only consider “punctual” footprints (they cast rays
and not cones), and they do not consider the correct
pre-filtering of the height maps used for tracing these
rays. Still, they could be used as a first approximation
to estimate S from the parallax offset and from its
partial derivatives, evaluated at the center of A.

Fig. 7. Parallax offset and Jacobian. Top: for a correct
rendering the surface maps must not be evaluated
in A0, the pixel footprint on the coarse mesh (dotted
blue line), but in the orthogonal projection A of the
pixel footprint S on the complex surface (here using
A0 would give a green color, instead of brown, the
correct result). Bottom: the parallax Jacobian nv

ng
has

important effects with near vertical facets. Here without
it we find the green part as dominant, in A, while in fact,
orthogonally to v, this is the brown part.

8.3.2 Parallax Jacobian

Unlike the parallax offset, the parallax Jacobian cannot
be handled separately from the pre-filtering algo-
rithms. This Jacobian can have important effects with
near vertical facets and grazing views. Indeed, an
almost vertical facet has a small area in a surface map,
but a large apparent area when the surface is seen
at grazing angles. The Jacobian correctly accounts for
this, and ignoring it can lead to errors (see Fig. 7).

As shown in Section 2.3, this Jacobian can be ig-
nored if it is uncorrelated with the surface maps. In
the other cases, recovering a correct view-dependent
pre-filtered map value from a map pre-filtered with-
out this Jacobian is not easy, because the correlation
between the map and the surface normals is gen-
erally not available. Normal maps are an exception:
a view-dependent NDF could be computed from a
“standard” NDF by weighting each normal with nv

ng
.

However, we are not aware of any non-linear pre-
filtering method doing this or, more generally, taking
the parallax Jacobian into account.

8.4 Silhouettes and curvature

Silhouettes correspond, by definition, to grazing view
angles. As already seen, this case is problematic for
the surface map pre-filtering methods, because many
correlations cannot be neglected in this situation. But
the very first problem is that the coarse mesh plus
surface map representation somehow breaks down
in this situation, because the coarse mesh resolution
becomes clearly visible at silhouettes. There are how-
ever some solutions to this problem, like Displace-
ment Mapping [70], Silhouette Clipping [73] or Shell
Mapping [74].
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The curvature of the coarse mesh on which the
surface maps are defined can also be a problem. For
instance, a normal map with only vertical normals,
once pre-filtered in texture space, will still have only
vertical normals. This is clearly false for a pre-filtered
area covering a curved part of the underlying coarse
mesh: the normals distribution should reflect this
curvature [75]. A solution is to express the normals in
a global frame, instead of in the tangent space to the
surface (this is possible with most normal map pre-
filtering methods, except those explicitly using this
tangent space, like [27]). But then the normal map
cannot be a pattern mapped in a repetitive way on
an object. It must also be specific for each object,
and the objects cannot be deformed. Curvature is
also a problem for horizon maps: the horizon angles
depend on the curvature of the underlying surface.
Heidrich et al. [34] pre-compute 5 horizon maps for 5
pre-defined curvatures, and then interpolate between
them at runtime. However, they do not address the
pre-filtering of these maps.

Note that Bidirectional Texture Functions also suffer
from the silhouette and curvature problems. Wang et
al. [76] solve the curvature problem in the case of
a 4D “semi-BTF” where the light direction is fixed,
by introducing an additional curvature parameter,
yielding a 5D table. Using the same approach for a full
BTF would give a 7D table, which is clearly too much
(a normal BTF is already quite difficult to manage in
terms of memory).

8.5 Mesh pre-filtering

The above silhouette and curvature problems are
particular cases of a more general problem cited in
the introduction, namely that pre-filtering the coarse
mesh and its maps separately is inaccurate. Some
mesh simplification algorithms take the maps into
account to ensure that parallax errors introduced by
the simplification step remain under a given threshold
(see [77], [78] for a survey of the mesh simplification
algorithms, and [79] for the specific case of terrains).
This is necessary but not sufficient: the mesh details
removed by the simplification must also be incorpo-
rated in the maps. Here the methods proposed by
Becker et al. [65] and Schilling [20] could be inspiring,
although they start from a bump map instead of
a mesh, as well as the ocean filtering method of
Bruneton et al. [63].

Finally, at large distances or very grazing angles,
when the simplified mesh becomes very different
from the complex surface, it may become impossible
to represent this surface with view-independent maps
(e.g., the foliage of a tree cannot be defined with view-
independent maps defined on an enclosing ellipsoid).
At this stage, instead of using view-dependent surface
maps, switching to a volumetric representation may
be more appropriate. But this opens a new problem,

out of the scope of this paper, namely the pre-filtering
of volumetric data used in a non-linear way for
rendering (e.g., [80]).

9 CONCLUSION

Surface attributes, such as normals, can generally not
be linearly pre-filtered because they are used in non-
linear functions for rendering. We have presented in
Sections 3 to 6 several methods addressing this prob-
lem, for the specific case of colors, normals, visibility
and shadows. These methods make various restrictive
assumptions, and have different quality, performance
and memory requirements.

However, as discussed in Section 8, these methods
are far from solving the general problem of pre-
filtering the appearance of complex surfaces. Besides
all the method-specific limitations, correlation of at-
tributes is almost never accounted for, and the level of
filtering is limited by the link between the coarse mesh
and its attributes – which is a problem for curvature,
silhouettes and distant views.

Still, we have shown in Section 7 that several
generic tools for non-linear pre-filtering could be ex-
tracted from the above methods, coming from dif-
ferent research topics. These tools can probably be
applied to more abstract or correlated parameters
describing the surface appearance (e.g., correlation
with visibility could be treated by storing view or
light-dependent parameters, using one of the repre-
sentation we discussed). In fact, we believe that huge
progress is feasible towards the pre-filtering of the
appearance of complex surfaces in the general case.
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