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Abstract

In this paper, we present a system that recognizes objects in
a jumble, verifies them, and then determines some essential
configurational information, such as which ones are on top.
The approach is to use three-dimensional models of the
objects to find them in range data. The matching strategy
starts with a distinctive edge feature, such as the edge at the
end of a cylindrical part, and then “grows" a match by add-
ing compatible features one at a time. (The order of features
to be considered is predetermined by an interactive, off-line,
feature-selection process.) Once a sufficient number of com-
patible features has been detected to allow a hypothesis to be
Jormed, the verification procedure evaluates it by comparing
the measured range data with data predicted according to the
hypothesis. When all the objects in the scene have been hy-
pothesized and verified in this manner, a configuration-
understanding procedure determines which objects are on top
of others by analyzing the patterns of range data predicted
Sfrom all the hypotheses. We also present experimental results
of the system’s performance in recognizing and locating
castings in a bin.

1. Introduction

How do you find a spatula in a drawer of kitchen
utensils? If it is partially covered by other objects, as it
probably is, you recognize one of its features, such as
the handle, and then use it to hypothesize the position
and orientation of the whole object. The more distinc-
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tive the visible features are, the easier it is to find the
object. v

We are intefested in everyday household tasks not
only because we want to learn more about how people
perform them, but also because we want to develop
techniques for performing similar industrial tasks. In
this paper, we are particularly concerned with the
problem of recognizing and locating identical objects

- jumbled together in a bin (see Fig. 1). By working on

this class of difficult tasks, we plan to develop general-
purpose techniques for recognizing and locating par-
tially visible objects. Qur approach is to use 3-D
models of the objects to find them in range data. Our
rationale for this approach is that, first of all, range
data simplify the locational analysis since the geomet-
ric information is encoded directly in the data. Sec-
ondly, it will soon be economical to use range sensors
in industrial tasks. Finally, familiarity with the model
of a part will add enough new constraints to make it
practical to locate relatively complex parts jumbled
together in a bin.

Speed is extremely important when performing
industrial tasks. One way to achieve speed is to locate
a minimum of object features and extract as much
information as possible from them. For example, after
a feature has been found, its identity can be used to
suggest the next feature to be located, and its position
can constrain the region to be searched. A typical
strategy of this type follows:

1. Locate a distinctive feature of the object to be
found.

2. Use that feature’s position to suggest where to
look for a second feature to verify the first.

3. Use the two features to predict a third feature
that completely constrains the position and
orientation of the object.

Bolles and Horaud 3



Fig. 1. Bin of castings.

Since some of the predicted features may not be visible
or the feature detectors may miss some visible ones,
alternatives have to be provided. Therefore, a complete
strategy is an ordered tree of features, and the recogni-
tion process is a tree search.

As with all tree searches, it is important to order the
alternatives according to their expected utility. This
may be done in advance to minimize execution time.
Thus, the system is naturally divided into two stages
(see Fig. 2). The first stage selects the recognition strat-
egies and the features to be used in them, while the
second stage applies the strategies to locate objects in
range data. Since the selection process is done only
once for each task, it can be performed off-line and
pass its results to the on-line system to be used repeat-
edly.

One of our goals for the 3DPO (three-dimensional
part orientation) system is to explore ways to select
strategies and features automatically. In this paper, we
concentrate on the development of an aggressive rec-
ognition system that tries to use as much of the avail-
able information as possible at each step of the pro-
cess. For example, in addition to the constraints
derived from previously located features, the system
uses (1) the geometry of the sensor to classify range
discontinuities; (2) the intrinsic properties of the object
features to reduce the list of candidate matches; and
(3) the fact that the objects are opaque to predict range
images, which in turn are used to verify hypothesized
objects.

In this paper we describe a system that recognizes

Fig. 2. Top-level block dia-
gram of the 3DPO System.
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objects in a jumble, verifies them, and determines
some essential configuration information, such as
which ones are on top. In Section 2, we present the
approach and show how it relates to other approaches.
In Section 3, we describe the object representation
scheme, which is designed to support both the off-line
and on-line portions of the system. In Section 4, we
discuss the rationale behind the selection of the strate-
gies and features to recognize a particular object. In
Sections 5-9, we describe the steps of the on-line rec-
ognition procedure. In each section we include a dis-
cussion of the strengths and weaknesses of the tech-
niques employed. We conclude with a brief outline of
work projected for the future.

Throughout the paper we illustrate the techniques
being described by applying them to the task of recog-
nizing the casting in Fig. 1. We chose this object be-
cause it is a moderately complex part that is typical of
a large class of industrial parts.

2. Approach

There are five steps in the on-line recognition process:

data acquisition,

feature detection,

. hypothesis generation,

. hypothesis verification,

. configuration understanding.

First, we gather a “dense” range image of the scene
(see Fig. 3). In Fig. 3A, the image points closer to the
sensor are lighter than those farther away. Second, we
locate features in the data, such as an arc at the end of

The International Journal of Robotics Research




Fig. 3. Registered range and
intensity images of a jumble.
A. Height image of a jumble.
B. Intensity image of jumble.

a cylinder or a straight edge formed by the intersection
of two planes. Third, we “grow” a match around a
distinct feature by adding compatible features, one at
a time. The order of features to be considered is prede-
termined by the off-line feature selection process. As

V ‘ each new addition is made to the set of mutually con-

sistent features, the system refines its estimate of the
object’s pose. (Pose is the object’s position and orien-
tation.) When a sufficient number of features has been
added to determine the pose, the matching system
forms a hypothesis and passes it to the verification
procedure for assessment. The verification procedure
uses the hypothesis to predict the range data that
should have been measured if the object were in fact
at the indicated pose and compares these predictions to
the measured data. If the predictions match the data,
the verifier accepts the hypothesis. If not, it rejects it.
When all the objects have been thus hypothesized and
verified, the configuration-understanding procedure
determines which objects are on top of other objects by
analyzing the patterns of range data predicted from
the hypotheses.

We see industrial vision researchers reaching a point
of convergence on a matching strategy that is a tree
search (e.g., Oshima and Shirai 1978; Faugeraus and
Hebert 1983; and Grimson and Lozano-Perez 1984).
These groups have concentrated on different types of
low-level features and applied somewhat different
compatibility checks, but the matching methods are
essentially the same. Our approach is of this type. It
requires more preliminary analysis of the objects than
some of the earlier approaches because it emphasizes
key features, but the gain in efficiency is often worth
the effort.

Range analysis programs have generally concen-
trated on one type of feature. Some have worked with
surface patches (e.g., Oshima and Shirai 1978; Duda,
Nitzan, and Barrett 1979; and Faugeraus and Hebert
1983). Others have worked with edges (e.g., Nevatia
and Binford 1977). And some others have worked
with simple shapes (e.g., Shirai and Suwa 1971; Pop-
plestone et al. 1975; and Nitzan, Brain, and Duda
1977). The 3DPO system starts with edges, but quickly
expands its analysis to include the adjoining surfaces.
This approach is particularly well-suited to industrial
parts that have distinct edges. Dave Smith at Carnegie-
Mellon University has recently developed a similar
system that builds descriptions of objects, such as pans
and shovels, from a combination of surface and edge
features (described in a yet unpublished manuscript).

Most object recognition research has concentrated
on making hypotheses, not verifying them. In this

Bolles and Horaud . 5




Fig. 4. Four-part object
model. A. Extended CAD
model. B. Feature classifica-
tion network. C. Planar-
patch model. D. Wire-frame
model.
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paper we include techniques for such verification, as
well as for analyzing sets of hypotheses to ascertain
which parts are on top of others.

3. Object Modeling

Computer-aided-design (CAD) systems and their rep-
resentations are intended for constructing and display-
ing objects, not recognizing them. Even though a
CAD model may be complete in the sense that it con-
tains all the 3-D information about an object, there
are more convenient representations for a recognition
system. For example, a CAD model might state the
size and position of a hole, but a recognition system
needs a list of all the holes of that size. In general, a
recognition system must be able to provide answers to
such questions as follow: :

How many features are there of a given type and size?

Which surfaces intersect to form this edge?

What other features lie in this plane?

What neighboring feature could be used to distin-
guish this feature from others like it?

To answer these types of questions efficiently, each
object feature should be listed under several different
classifications. For example, a dihedral edge should be
in the list of edges bounding the two surfaces that
meet and form the edge; it should be in the list of all
dihedral edges (classified according to their included
angles); and it may also be in other lists, such as the list
of features in a specific plane. This redundancy is the
key to efficient processing.

In the 3DPO system, the model of a part consists of
four components: an extended CAD model, a feature
classification network, a planar patch model, and a
wire-frame model (see Fig. 4). The extended CAD
model is the primary model of the part from which
the other models are derived. Each is designed for a
specific function. The feature network supports the
off-line feature selection procedure; the planar patch
model is used to predict range data for the verification
and configuration-understanding procedures; and the
wire-frame model is used to display hypotheses.

The extended CAD model consists of a standard
volume-surface-edge-vertex description and pointers

" linking topologically connected features. For example,

the representation of an edge includes pointers to the

~ two surfaces that intersect to form it, while the repre-

sentation of a surface contains an ordered list of its
boundary edges and a list of its holes. We have imple-
mented a version of this modeling system that uses a
pointer structure similar to Baumgart’s winged-edge
representation (Baumgart 1972). The primitives are
cylindrical and planar surfaces surrounded by circular
arcs and straight lines. We selected this limited set of
primitives because they are common components of
machined and cast objects and can be modeled mathe-
matically with ease.

Figure 5 shows two views of the casting model built
in terms of these primitives. It contains 7 full cylin-
ders, 8 partial cylinders, 25 planar patches, all of which
are bounded by 32 circular arcs and 28 straight lines.
These numbers are large enough to exclude the
straightforward matching strategy that compares each

The International Journal of Robotics Research




Fig. 5. Model of casting
(bottom and top).

observed feature (i.e., line, arc, plane, or cylinder) with
each model feature and tries to find the largest set of
consistent matches. The combinatorial explosion in-
herent in this search, however, can be reduced dramat-
ically by carefully selecting the order of the features to
be considered, measuring certain properties of the
observed features, and then restricting the matches to
those between features with similar properties.

The second component of an object model in the
3DPO system is a feature network, which is primarily
designed to support the off-line feature selection por-
tion of the system. In the current implementation, the
network classifies features according to their types and
sizes. There are several different lists, including a list
of circular arcs (sorted by radius) and a list of straight
edges (sorted by length). Given these ordered lists as a
data base, we have implemented a set of routines that
can answer some of the questions mentioned earlier.
These routines extract entries from these lists and then
analyze the topology of the object in the vicinity of
each extracted feature. For example, these routines can
quickly produce a list of all circular edges that are
concave dihedral angles and have radii of between .8
and 1.0 inch.

Fig. 6. Planar patch model
of casting (bottom and top).

el ek & ol
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We plan to include other feature groupings, such as
lists of surface elements that have a common normal
or lists of cylinders that have a common axis. Each
representation will be designed for a set of special-
purpose procedures that analyze the data in terms of a
single property-—yet all the representations will con-
tain pointers back to the extended CAD model, which
serves as the core representation.

The third component of a 3DPO object model is a
planar patch description of the object. It is composed
of lists of small planar patches on the object’s surface.
Figure 6 shows two views of the model of the casting,
which consists of approximately 500 patches. The
patches are grouped into sublists of those lying on in-
dividual object features, such as a cylindrical or planar
surface. In the current system, each planar patch is the
same size and is represented by a 3-D location for its
center and a surface normal. The surface normals are
used by the range prediction routines to eliminate
quickly those surfaces that face away from the sensor.
This simple surface model was used instead of a more
complete CAD model because it provided an easy way
to predict range values.

The fourth and final component of an object model
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is the wire-frame model. It is a list of object features,
such as cylinders and planes, to be displayed for hy-
pothesized objects. Figure 5 is actually a view not of
the CAD model, but of the wire-frame model of the
casting. The CAD model includes significantly more
features than the ones shown. Given a hypothesis to
display, the current display routine applies a few sim-
ple rules to determine which lines to draw for each
feature. A more complete graphics system would pro-
duce a more accurate rendering of the object. With
our relatively crude graphics system we have found it
helpful to simplify the display by showing only a few
key features.

In the 3DPO modeling system we differentiate be-
tween view-independent relationships, such as topo-
logical connectivity, and those that are view-depen-
dent, such as image proximity (in pixels). The
view-independent relationships are functions of the
inherent geometric characteristics of the part, such as
its size and topology, and can easily be enumerated by
an analysis of the part model. The view-dependent
relationships, on the other hand, are functions of the
sensor, its type, and its location; they are significantly
more difficult to list. Even a simple part can exhibit
50 or more structurally different views (Chakravarty
1982). Also see Koenderink and Van Doorn (1976) for
a discussion of the changes in appearance of an object
as it 1s rotated in front of a viewer. We plan to investi-
gate techniques similar to those used in ACRONYM
(Brooks 1981) for representing classes of similar views.

4. Feature Selection

The recognition strategy, as outlined above, is to locate
a key feature and then add one feature at a time until
the object can be located reliably and precisely. We
refer to the first feature to be located as the focus fea-
ture, which is consistent with the terminology used in
the two-dimensional local-feature-focus method
(Bolles and Cain 1982). The selection of the focus
feature is a function of several factors. Some of these
factors are the uniqueness of the feature, its expected
contribution, the cost of detecting it, and the likeli-
hood of detection. Some features are inherently easier
to find than others. If two features provide informa-
tion that is essentially of equal value, but one feature

Fig. 7. Three types of edges.
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is easier to find, it should be ranked ahead of the other
one. If a feature is often missed by the feature detec-
tors, its rank should be lower than for one that is con-
sistently found.

Selection of the second, third, or fourth features is
even more complex than the first because it is a func-
tion of the set of features already detected as well as its
own characteristics. For example, if one or more fea-
tures have been found, some may be eliminated from
the list to be considered because they are on the side
of the object away from the sensor. Faugeras et al.
(1983) have used this type of reasoning to reduce their
tree searches.

In the 3DPO system, we concentrate on edges be-
cause they contain more information than surface
patches and are relatively easy to detect in range data.
We have worked with three types of edges: straight
dihedrals, circular dihedrals, and straight tangentials
(see Fig. 7). Each type has a set of intrinsic properties
that can be used to identify matching model edges.
For example, a straight dihedral has its length, the size
of the included angle (if both surfaces are detected),
and the properties of the adjacent surfaces, such as
their widths and areas (see Fig. 8A). Circular dihedrals
have the same properties as straight dihedrals plus two
additional ones: the radius of the circle and the binary
property of whether or not the planar surface is inside
or outside the circle (see Fig. 8B). Note that it is possi-
ble to establish these last two properties even if only
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Fig. 8. Properties of the three
edge types. A. Straight di-
hedral. B. Circular dihedral.
C. Straight rangential.
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one surface is detected. Straight tangential edges (see
Fig. 8C) have fewer intrinsic properties than circular
dihedrals. Since range data are noisiest on surfaces
curving away from the sensor, straight tangential edges
are difficult to locate. As a general rule, circular di-
hedrals are more distinct and easier to find than the
two types of straight edges.

There are four contributions a new feature can make
in the “grow-a-match approach” that we are pursuing.
It can

1. reduce the number of interpretations for a
cluster of located features,

2. verify an interpretation,

3. determine some unknown degrees of freedom
associated with an interpretation,

4. increase the precision with which the degrees
of freedom can be computed.

A single feature can make more than one contribution.
For example, a new feature could verify an interpreta-
tion and increase the precision.

“An unconstrained object in a jumble has six degrees
of freedom associated with its position and orienta-
tion, three displacements, and three rotations. Differ-
ent types of object features constrain different degrees
of freedom. For example, a circular dihedral deter-
mines all but one of the object’s six degrees of freedom.
The only unknown i1s the rotation about the axis of
the cylinder. Locating a straight dihedral on an object
also determines five degrees of freedom, except that
there is a binary choice of the orientation along the
edge. The one undetermined degree of freedom is the
position of the edge along the matching line. A
straight tangential determines only four degrees of
freedom because the object can rotate about the cylin-
der and slide up and down the matching edge. Thus,
circular dihedrals, in addition to being more distinct
than the straight edges, also provide slightly more
constraints on the object’s position and orientation.

Given the task of recognizing and locating an object
or set of objects, the 3DPO system divides the set of
object features into subsets with similar intrinsic prop-
erties and applies a different matching strategy for
each subset. Thus, if a 2-in. circular dihedral is found
as the focus feature, one strategy is adopted; if a 1-in.
circular dihedral is found, a different strategy is used.
The strategies in the current system are determined
interactively and are implemented as procedures. As
mentioned earlier, we plan to develop an automatic
selection procedure that builds trees of features for
subsequent interpretation by a general-purpose proce-
dure.

The circular dihedrals are the best focus features for
the casting in Fig. | because their intrinsic properties

Bolles and Horaud _ 9




Table 1. Table of Circular Arcs

Dihedral Arc Plane Cylinder
Name Radius Plane Angle Angle Length Width Width
Base-bottom 2.30 inside 90 360 14.4 0.4 1.0
Base-top 2.30 inside 90 317 12.7 1.3 1.0
Shelf-bottom 2.30 outside —90 43 1.7 0.4 1.2
Inside-base 1.90 outside 90 360 11.9 0.4 0.7
Pipe-shoulder 1.00 inside 90 360 6.3 0.1 1.8
Pipe-top 0.90 inside 90 360 5.7 0.3 0.9
Pipe-base 1.00 outside —-90 243 4.2 1.3 1.8
Pipe-on-shelf 1.00 outside —90 116 20 1.6 1.5
Pipe-joint 0.90 outside —90 360 5.7 0.1 0.9
Corner-1 0.68 inside 90 100 1.2 0.2 0.7
Small-cylinder 0.50 inside 90 360 31 0.2 0.7
Corner-2 0.38 inside 90 89 0.6 0.2 0.7
Corner-3 0.33 inside 90 103 0.6 0.2 0.7
Inside-pipe 0.55 outside 90 360 3.5 0.3 2.6
Corner-4 0.43 outside 90 100 0.7 0.2 0.7

generally reduce the number of possible interpretations
to one or two, even though the casting has more circu-
lar edges than straight edges. Table 1 lists 15 of the
circular arcs on the casting and their intrinsic proper-
ties. (The other 17 arcs are not included because they
are either too small to detect or are not visible.) The
horizontal rules in the table delimit subsets of features
that have similar values for the first two properties
listed across the top of the table. Note, for example,
that there are four circles with radii of approximately
2 in., but they are divided into two subsets because
two of them have a planar surface inside the circle and
two of them have a planar surface on the outside. The
first two properties are used because they can be com-
puted even if only one of the surfaces adjacent to the
edge is visible. Table 1 illustrates the importance of
knowing the sizes of model features and the ability of
the feature detection procedures to classify features
according to their sizes. ]

The 3DPO system employs a different strategy for
each of the six subsets of features in Table 1. Each
strategy depends on the number of features in the sub-
set and the structure of the object in the vicinity of the

10

feature. The strategy for the first subset is to try to
ascertain which one of the two features has been
found. If the surfaces adjacent to the edge have been
located, their respective properties suffice to differen-
tiate the two. If not, the system tries to find either the
pipe-base arc or the inside-base arc (shown in Fig. 9),
either of which would identify the focus feature. Once
this has been done, the next subgoal of the strategy is
to compute the rotation about the axis of the cylinder.
This is done typically by locating some of the straight
dihedral edges shown in Fig. 9. The strategy starts with
a focus feature that is relatively distinct; next it locates
a second feature to identify the focus feature; then it
finds a feature or two to determine the final degree of
freedom.

These edge-based strategies are made possible by the
fact that we can reliably locate edges and measure
properties of the adjacent surfaces. Since our data are
gathered by a triangulation system, they rarely contain
more than two surfaces that are connected directly.
Usually a “missing data” area intervenes between
surfaces. Therefore, any attempt to grow matches topo-
logically beyond a couple of surfaces is likely to fail.

The International Journal of Robotics Research
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In the past, most vision researchers have avoided
objects with several features because they wanted to
keep the images as simple as possible. We, on the other
hand, have found that an abundance of features is
generally helpful because it means that there is almost
always a nearby feature to help identify one for which
there are many interpretations. If all the objects are
parallelepipeds, all the features look the same. The
nearby features are not much help either, since they
ali look the same too. However, if an object has 30
different features, finding one is often enough to form
a hypothesis— while finding two generally suffices to
both form a hypothesis and verify it. The fact that the
average depth of a strategy tree is about three or four
features indicates that the features on the casting pro-
vide significant information.

5. Data Acquisition

We use the White Scanner, built by Technical Arts,
Inc. of Seattle, Washington, to gather our range data.
It is a triangulation device that projects a plane of light
onto the scene, as shown in Fig. 10. It measures the X,
¥, z components and intensity of points along the
intersection of the light plane and the objects in the
scene. To gather a “dense” range image, the plane is
scanned across the scene and the image built up one
line at a time. Figure 11 is an overview of the work

station showing the laser and the camera used to gather
raw data for processing by the White Scanner computer.

Figure 12 shows the data obtained by this sensor.
Figure 12A contains the intensity data. Figure 12B is
the z component of the range data. Figure 12C is the x
component. (The y component is not shown.) Figure
12D is the code image. The coordinate system of the
data has its origin on the table top and the z axis
pointing up toward the sensor. Thus, z values corre-
spond to heights above the table. The data are encoded
in these images so that larger values are lighter, which
means that the z component is encoded so that higher
points are lighter. The black regions in the images are
areas of “no data” that are usually due to occlusion;
the camera cannot see the intersection of the light
plane and the objects in the scene. The code image
specifies the sensor’s behavior at each point. It indi-
cates such things as no visible stripe, multiple visible
stripes, and blooming (which we will explain shortly).

It takes approximately five minutes to gather a
240 X 240 dense range image, such as the one whose
components are shown in Figure 12. The field of view
of the sensor is approximately 12 in X 12 in. The rela-
tive precision of the height measurements is about
.020 of an inch. At the time we took these images we
had a problem with the laser light plane drifting rela-
tive to the camera, which had the effect of slightly
reducing the absolute precision.

Since the surfaces of the castings are dull (i.e., they
have a large Lambertian component in their reflectiv-
ity function), the sensor is able to measure data off
surface patches whose normals point as much as 45 or
50 degrees away from the line of sight. A shinier sur-
face would reflect less energy back to the camera,
which would shrink the range of orientations for mea-
surable surfaces.

Shiny surfaces cause two additional problems: mul-
tiple reflections and blooming. Multiple reflections
occur when the light plane intersects a shiny surface,
bounces off it, and intersects another surface. If the
camera sees light reflected from both surfaces it cannot
distinguish the primary reflection from the secondary
one; consequently, the sensor is unable to compute a
unique range value,

The second problem, blooming, arises when the
camera’s dynamic range is insufficient to handle the
amount of light reflected from the surface. This is

Bolles and Horaud 11




Fig. 10. Diagram of a trian-
gulation-based range sensor.
A. Range sensor based on a
camera and a plane of light.
B. Image of the intersection
of the light plane and the
objects.

A

more of a problem for shiny surfaces because they
have a large specular component in their reflectivity
function, which means they reflect a larger portion of
the incoming light at the specular angle. If the camera
happens to view a shiny surface patch from the specu-
lar direction, it receives significantly more light than at
other angles, which may cause it to bloom. The effect
of blooming on the range data depends on how the
camera blooms. Some cameras, such as a Fairchild
CCD, fill a whole column of the image with white if
they bloom, causing multiple reflections on all lines.
Other cameras, such as a GE CID, just spill white into
adjacent pixels. Unfortunately, they don’t always do it
symmetrically, a condition that would be relatively
gasy to correct.

6. Feature Detection

We locate local features, such as the arc at the end of a
cylinder, by performing the following sequence of
operations:

Detect discontinuities in the range data.

Classify them as jump discontinuities, convex dis-

continuities, shadows, etc.
Discard artifacts, such as shadows.

12

Link the discontinuities into edge chains.

Classify the chains into subchains lying in planes.

Segment the planar subchains into arcs and lines.

Analyze the surfaces adjacent to the arcs and lines.

Refine the locations of the arcs and lines by inter-
secting the adjacent surfaces.

We locate discontinuities by analyzing the data one
row at a time and then one column at a time. The row
analysis detects vertical edges, while the column analy-
sis detects horizontal edges. In each direction we mark
jump and slope discontinuities. We locate slope dis-
continuities by recursively partitioning a sequence of
contiguous points into line segments and then evaluat-
ing each corner that is introduced. To evaluate a
corner, we fit portions of the data on both sides of it
with lines and mark it as a slope discontinuity if the
angle between the two lines is less than some threshold,
such as 150 degrees. In effect, we use the recursive
line-fitting procedure to suggest possible discontinui-
ties, which we than evaluate further.

Figure 13 illustrates this edge detection process.
Figure 13A shows a typical slice of range data 1n the
coordinate system of the light plane. The ordered list
of points is first divided into six sublists of contiguous
points, and then line segments are fitted recursively to
each sublist. This fitting process introduces the circled
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Fig. 11. Overview of the Fig. 12. Raw data produced  Fig. 13. Edge detection
work station. by the White Scanner. A. process. A. Slice of range
Intensity image. B. Z image. data. B. Corners inserted by
C. X image. D. Code image.  the recursive line-fitting
routine.

corners shown in Fig. 13B. After these are evaluated,
the two corners on the arc are discarded because they
are not sharp enough.

The next step is to classify each discontinuity. Figure
14 shows the types of classifications used by the 3DPO
system. Figure 15 shows the classifications of the dis-
continuities illustrated in Fig. 13A. A tangential dis-
continuity is formed by a surface curving away from
the line of sight (i.e., along the side of a cylinder). A
shadow discontinuity occurs when one surface oc-
cludes another. In Fig. 15 the two shadows furthest to
the right are easily detected because they lie directly
under a jump discontinuity. The other two shadows
are more difficult to detect because they are produced
by a surface curving away from the sensor. To do 50,
the program uses a heuristic for tangential discontinui-
ties that in effect allows for a wider gap between light
rays than at jump discontinuities. To detect them, the
program looks for discontinuities close to, but not
directly under, the tangential discontinuities.

Once the discontinuities have been classified, the
artifacts, including shadows and picture edges, are
removed from further consideration. This elimination
of artifacts typically reduces the number of edge points
by about 30 percent. It is, therefore, an important step
in the process of locating valid object features.
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Fig. 14. Discontinuity classi-
fications along a slice.
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After the individual edge points have been detected,
classified, and filtered, they are linked together to form
edge chains (edges). The linking procedure starts with
an unattached edge point and tries to form a string of
connected edge points. One point is added at a time to
the current list, with preference given to points of the
same type, points in line with the current edge, and
points close to the preceding one. Figure 16 shows the
edges located in the data in Fig. 12. Notice that the
top edge of the shadow cast by the vertical pipe near
the center of the picture has been eliminated by the
shadow filter. A small portion at the right of that
shadow edge was missed by the filter.

As we mentioned before, the 3DPO system concen-
trates on three types of object features: straight di-
hedrals, circular dihedrals, and straight tangentials.
Each of these features lies in a plane. A straight di-
hedral lies in both the planes that intersect to form the
edge, a circular dihedral lies in the plane that intersects
the cylinder at right angles, and a tangential edge of a
cylinder lies in a plane tangent to the cylinder. To
locate such features, therefore, the program partitions
edges into planar subedges by fitting planes recursively
to smaller and smaller portions of the edges until the
points along each subedge lie in a plane.

The next step in the feature detection process is to
partition the planar subedges into circular.arcs and
straight lines. To do this, the program maps the 3-D

14

Fig. 15. Classifications of
the discontinuities along the
slice in Fig. 13A.
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points along a subedge into the two-dimensional coor-
dinates of the plane passing through them, and then
partitions the two-dimensional curve into circular arcs
and straight lines. It applies a technique similar to
Pavlidis’s (1982) to accomplish this final segmentation.
Figure 17 shows the straight lines and the points along
the circular arcs found for the edges in. Fig. 16.

The last two steps of the feature detection process
are to analyze the surfaces on either side of an edge (if
there are data on them) and intersect them to improve
the estimates of the edge’s location. Each of the sur-
faces is classified according to its type and a few simple
properties are measured, such as the maximum excur-
sion of the surface from the edge. A circular edge is
expected to have one planar surface and one cylindri-
cal surface adjacent to it. Straight segments may be the
tangential edge of a cylinder, the intersection of two
planes, or the intersection of a plane and a cylinder.
After the surfaces have been classified, they are refitted
with as much data as possible and the updated surface
equations are used to improve the estimates of the
parameters of the lines and circles. ThlS completes the
feature detection process.

The most time-consuming part of the feature detec-
tion process is the analysis of the surfaces adjacent to
the edges. While it is important to determine surface
type, it is less essential that exact fits be produced —
rough estimates of the surface parameters may be
sufficient. Therefore, it appears that it would be more
efficient to develop some techniques that characterize
surface types quickly than to spend the time required
to perform costly iterative fitting.

Extra features can slow the matching process down
a little because they force the program to explore hy-
potheses that it cannot verify. We have not found this
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Fig. 16. Nonshadow range
edges.

Fig. 17. Circular arcs and
straight lines.

to be a significant problem, however. In fact, we
usually set relatively low thresholds for accepting fea-
tures and rely on the high-level system to filter out the
extra ones. Low thresholds are beneficial because they
let in features that otherwise would have been missed,
and the false features are quickly rejected because they
do not form clusters of features that are consistent
with the objects.

7. Hypothesis Generation

The top-level strategy for hypothesizing object loca-
tions tries to grow a match from the most distinctive
feature found by the feature detection procedure, then
from the second most distinctive feature, and so on.
When a hypothesized object is verified, its features are
removed from the global list of features, which in
effect simplifies the scene to be analyzed. This process
of hypothesizing and verifying objects continues until
everything in the scene is understood or no more
matches can be formed.

The most distinctive features for the casting are the
large to medium-sized circular arcs listed in Table 1,
followed by the longer tangential edges. Therefore; the
program starts its analysis of a scene, such as the one

shown in Fig. 17, by looking for the larger circular

arcs. When it finds one, it applies the strategy that was -
established for that type of focus feature by the off-line
strategy selection process. Figure 18 shows one of
these large arcs with a radius of approximately 2 in.
and a planar surface on the outside. This indicates this
arc must be either part of the shelf-bottom arc or the
inside-base arc. Since its length is significantly longer
than 1.7 in., the program eliminates the shelf-bottom
interpretation.

To verify the inside-base interpretation, the strategy
associated with this focus feature applies a routine to
locate one of the concentric circles on the bottom of
the casting. This is essentially a verification routine
that tries to find a circle with a specific radius at a spe-
cific 3-D position and orientation. To do this, the
strategy first looks to see if such a feature has already
been detected. If so, the inside-base interpretation is
verified. If not, the program analyzes the range data for
evidence of the circle. Figure 19 shows two concentric
circles located in this manner. The small one had al-
ready been detected by the initial feature detection
process. The larger one was detected by reanalysis of
the data. The system uses the data along these circles to
refit the plane passing through them and to improve
its estimate of the location of their common center.
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Fig. 18. A circle fitted to an
arc.

These parameters determine five of the casting’s six
degrees of freedom.

To determine the sixth degree of freedom, the pro-
gram has to locate a feature that is not symmetric
about the axis of the cylinder. The best features for
this purpose are. the line segments that are part of the
design on the bottom of the casting, which unfortu-
nately are all quite similar. So, instead of selecting one
feature for the next branch of the tree search, the strat-
egy includes a multifeature step that involves locating
several lines and determining the largest subset of
them that 1s consistent with the model. The maximal-
clique algorithm used to find the largest subset of con-
sistent matches is itself a tree search (Bolles 1979). The
system views the location of this subset as only one
step in the strategy, however, so that it can evaluate the
success of the maximal-clique algorithm separately.

Figure 20 shows the line segments that are in the
same plane as the circle and may be part of the pattern.
There are five lines, each with two or three interpreta-
tions. These lines imply a graph containing 12 nodes
to be analyzed by the maximal-clique algorithm. Fig-
ure 21 shows the final hypothesis, which is based on
the initial circle and four of the line segments.

In Fig. 22, another circular arc is shown with its set
of line segments for computing the rotation. In this

16

Fig. 20. Candidate lines for
determining the rotation.

Fig. 19. Concentric circles.

case, the maximal-clique algorithm finds three line
segments that are mutually compatible with the circle.
Figure 23 depicts the final hypothesis. "
The program arrived at five hypotheses by starting
with circular arcs (see Fig. 24). It then started consid-
ering tangential edges. The strategy for dealing with
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tangential edges is to locate other cylinders and circles
that have axes almost collinear with the initial cylin-
der. Locating one additional feature is generally
enough to compute five degrees of freedom. Thus the
strategy is the same as for circles: locate a feature to

_ determine the sixth degree of freedom. Figure 25

Fig. 21. Hypothesized cast- Fig. 22. Circle and candidate

Fig. 23. Hypothesized cast- Fig. 24. Five hypotheses
ing. derived from arcs.

shows a cylinder and a compatible circle. Figure 26
shows a hypothesis based on the five degrees of free-
dom computed from the cylinder and circle. The sys-
tem missed the seventh casting in the scene because it
only found one of its features.

The tests we use for checking the compatibility of
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Fig. 25. Cylinder and com-
patible circle.

Fig. 26. Hypothesized cast-
ing.

one feature with another are extensions of the two-
dimensional point-to-point tests used in the local-
feature-focus system (Bolles and Cain 1982) and the
3-D point-to-plane tests used by Grimson and Lo-
zano-Perez (1984). Since the observed features are seg-
ments of lines, circles, and cylinders, the tests are seg-
ment-to-segment matches in the sense that they can
use the lengths of the features to constrain the extent
to which one feature can slide along a matching fea-
ture. Long features constrain the sliding more than
short ones. So far we have not tried to develop a
minimum set of tests. We have simply implemented
a set of inexpensive tests to eliminate obvious mis-
matches. ,

Industrial systems have to be robust to be practical.
For the 3DPO system, this means that the high-level
system has to work even when the low-level system
misses features and finds extra ones. It recovers from
most missing features by focusing on other features of
the object. If several features on an object are missed
or are obscured by other objects, the system may take
a while to recognize the object because it has to pro-
ceed through its list of features. Of course, if all the
major features are missed, the system inevitably will
miss the object altogether.

18

8. Hypothesis Verification

After the system hypothesizes an object’s pose, there
are three things it can do to increase an arm’s chances
of acquiring the object correctly. It can

1. verify the hypothesis,
2. refine the pose estimate, and
3. determine the object’s configuration.

In this section we describe a verification technique. In
the next section we show how it can be extended to
determine which objects are on top of the jumble.
Although the pose refinement step is an essential com-
ponent of a complete system, it will not be discussed
here. We simply observe that Rutkowski and Benton
(1984) have described an approach to pose refinement
that looks promising.

There is only one way to check a hypothesis: com-
pare predictions with data gathered from the scene.
Predictions may differ in type, but the process of
checking a hypothesis is nonetheless identical. If too
many predictions disagree with the data, the hypoth-
esis is rejected. ‘

Predictions can be object features (e.g., holes,
corners, or surface patches) or they can be sensor data
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Fig. 27. Range prediction
procedure. A. Seven
hypothesized castings.

B. Synthetic height image.
C. Measured height image.

|

(e.g., the expected intensity of a point on the surface
of an object). Most matching strategies have feature-
level verification built into the matching process. They
use the first few features to narrow the number of
possible matches down to one— which is equivalent
to making a hypothesis—and then match additional

features to increase confidence in that hypothesis.
These systems generally report the hypotheses that
contain the most matching features to be the best
matches.

Data-level comparison is another type of verification
that can be done. With this kind of comparison, the
program employs a hypothesis to predict the data that
would have been measured by the sensor if the object
had been 1n the hypothesized pose and then compares
these predictions with the data actually measured by
the sensor. In this paper, we describe data-level tech-
niques that complement traditional feature-level tech-
niques. We concentrate on range data because they
encode the geometry of an object directly and are
relatively easy to predict.

The 3DPO system forms one hypothesis at a time
(such as the one shown in Fig. 21) and then tries to
verify it. To check a hypothesis, the program predicts
the range data, compares it with the actual data, and
then makes decisions based on the correlation between
the predicted and actual data. The predictions are an
estimate of what the sensor would have seen if the
objects had been in the hypothesized poses. To make
the predictions, the program uses the planar-patch
model shown in Fig. 6. Given a hypothesis or set of
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significantly farther from the
sensor than predicted. C.
Measured data are signifi-
cantly cleser to the sensor

Fig. 28. Possible relation-
ships between predicted and
measured range data. A.
Measured data are approxi-
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hypotheses, the program builds an image by painting
in regions corresponding to the surface patches in the
scene that are closest to the sensor. This is essentially
the same as the z buffer technique used by a computer
graphics system. Figure 27B shows a predicted range
image that corresponds to the measured data in Fig.
27C. It was produced from the seven hypotheses
shown in Fig. 27A. (The seventh casting, which was
missed by the hypothesis generation procedure, was
added interactively to the scene description to illustrate
this range prediction procedure and the configuration
understanding procedure discussed in the next section.)

When a measured range value is compared with a
predicted value, three situations can occur:

1. The measured data are approximately equal to
the predicted data.

2. The measured data are significantly farther
from the sensor than the predicted data.

3. The measured data are significantly closer to
the sensor than the predicted data.

These situations are presented in Fig. 28. In Fig. 284,
the measured data agree with the prediction, and the

system increases its confidence in the hypothesis that
led to that prediction. In Fig. 28B, the sensor appears

20
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to have seen through the predicted object because the
measured data are farther from the sensor than the
predicted data. This is strong negative evidence, since
the objects are assumed to be opaque. In Fig. 28C,
there appears to be an object between the sensor and
the hypothesized object. By itself, this situation is in-
conclusive. It neither supports nor refutes the hypoth-
esis. Given a set of hypothesized objects for a scene,
however, it is possible to determine whether or not the
measured data belong to any one of them. If so, the
program marks the data as explained and treats them
as neutral evidence. If not, it marks the data as unex-
plained and treats them as weak negative evidence.
The three types of predictions are referred to as posi-
tive, negative, and neutral evidence, respectively.

To illustrate the classification of predicted surface
patches, let us consider the range image in Fig. 29A.In
the middle of the image there is a casting that is differ-
ent from the model. It has a pipelike portion that is
about the same diameter as the one on the expected
casting, but is significantly longer. Let us assume that
the system finds the end of that pipe and hypothesizes
a pose, such as the one shown in Fig. 29B. Since the
hypothesis is based on the data near the end of the
pipe, the predictions in that region agree with the
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Fig. 29. A bad hypothesis. A.
Measured range data. B.
Hypothesized casting. C.
Negative evidence. D. Neu-
tral evidence.

B

measured data. In some of the other regions, however,
the predictions disagree. Figure 29C shows the nega-
tive evidence (i.e., the predicted data that are farther
from the sensor than the measured data). Figure 29D
displays the neutral evidence (i.e., the predicted data
that are closer than the measured data). This hypoth-

D

esis would be rejected because of the large region of
negative evidence.

The 3DPO system makes hypotheses one at a time,
checking each individually as it is formed. Figure 30
depicts a good hypothesis. Figure 30A shows the mea-
sured range data, Fig. 30B the hypothesis, Fig. 30C the
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Fig. 30. A good hypothesis.
A. Measured range data. B.
Hypothesized casting. C.
Negative evidence. D. Neu-
tral evidence.
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negative evidence, and Fig. 30D the neutral evidence.
There are several small discrepancies along the edges
of the object that are due to a slight misalignment of
the hypothesis. Because they are all small, however,
the system still accepts this hypothesis. Nevertheless,
the large number of edge effects emphasizes the need
for a technique to refine pose estimates. A better pose
estimate would eliminate most of the discrepancies.

The feature-based approach to hypothesis verifica-
tion is convenient because the features have already
been detected as part of the matching process; essen-
tially, all that remains to be done is to match a few
additional features. There are at least two disadvan-
tages, however. First, this method requires that an
object possess several distinct features (e.g., it doesn’t
work very well for smooth objects such as an apple).
Second, it places a burden on the feature detectors in
that they must locate all the features and describe
them in a canonical way. If any features are missed or
described incorrectly, a more complicated matching
strategy will be necessary. For example, if a feature is
missed, the program may have to apply a specially
tuned feature detector to find the feature in order to
include it in the verification process. (We have used
this approach in the 3DPO system to find such things
as concentric circles.) If a feature detector happens to
describe the low-level data in a way that is different
from what was expected, the matcher will have to be
smart enough to recognize alternative descriptions.
For example, if the line-and-arc fitter should segment
an arc predicted from the model into a sequence of
short line segments, the matcher would have to recog-
nize the pieces as parts of the arc.

One of the advantages of a data-level approach to
hypothesis verification is that it is a homogeneous
process that works for all types of objects. Another ad-
vantage is that it produces explanations in terms of
regions, which is a convenient form for deciding how
much of a scene is explained by a set of hypotheses.

One disadvantage of a data-level approach to hy-
pothesis verification is that it requires a detailed model
of the physics of the sensor. While this is relatively
straightforward for range data, our current capabilities
cannot handle intensity images. We can of course
predict the locations of edges in an intensity image,
but even then we lack models of the detectors em-
ployed to locate the edges. Since each detector has side

effects, such as displacing edges and inserting new
ones, precise predictions are still not possible.

A second disadvantage of data-level verification is
that it is sensitive to misalignment. Slight offsets lead
to discrepancies along the edges of an object. One way
to reduce misalignment is to apply an iterative tech-
nique that assigns measured data points to surfaces of
the object, uses these assignments to update the pose
estimate, and then repeats the process until it mini-
mizes the sum of the errors. Given a good estimate of
the pose, the program can reject the hypothesis if the
sum of the errors is too large, or, alternatively, it can
make the data-level comparison perform a more struc-
tural evaluation of the match.

In the future we plan to investigate ways of combin-
ing feature-level verification with data-level tech-
niques. This combination would utilize features to
help develop a region-based explanation of a scene.
For example, the location of a feature could be used
for local correction of a global pose estimate so as to
avoid the edge effects resulting from an unguided
data-level comparison. Such a system would also pro-
vide a way of extending the technique to gray-scale
analysis when it is impossible to predict absolute in-
tensity values yet possible to predict intensity edges
and approximate intensity values.

9. Configuration Understanding

There are several reasons why it is better to pick up an
object from the top of a pile than one that is partially
buried. First, the topmost object usually has more
surfaces exposed and hence provides more ways in
which it can be grasped. Second, its relatively accessi-
ble location minimizes the force required to extract it.
This also tends to minimize the forces that might
change the object’s pose in the hand of the robot. This
1s important because the goal of the 3DPO system is
to ascertain the pose of an object before grasping it so
that the arm can select a grasping position that will be
compatible with the pose required at the time the
object is set down. If the pose of the object in the hand
changes as the object is being pulled out of the pile,
the system loses some essential positional information.
A third reason for seiecting the top object is that its
removal generally causes minimal disruption to the
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Fig. 31. One object occluding
another.
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rest of the pile, thus simplifying the analysis necessary
for selection of the next object to be acquired.

The 3DPO system determines which object is at the
top of a pile by predicting a range image from all the
verified hypotheses, tagging each projected range value
with the number of the hypothesized object it was
derived from, and then checking to see which one is
on top whenever two predictions are made at the same
place in the image. As it makes predictions and com-
pares them with the partially completed image, the
program gathers statistics on the number of overlap-
ping patches between the members of each object pair.
After completing this analysis, it uses the statistics to

construct a graph that represents the significant occlu- -

sions.

Figure 31 illustrates a typical occlusion. In this ex-
ample, at least four range values would be predicted
along the indicated ray, which corresponds to one
pixel in the synthetic image. It is easy to determine
that at this particular pixel object 2 is on top of object
1. When three or more objects are present along a ray,
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Fig. 32. Stack of three objects.
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the amount of configurational information extracted
depends on the amount of data the program stores for
each pixel. The current program keeps track of the
range value closest to the sensor and the object to
which it belongs. When a new range value is predicted,
the program checks the synthetic image to ascertain
whether a value has already been predicted for that
pixel. If not, it inserts one. If so, it compares the object
identification numbers of the old and new predictions.
If they are the same, the program updates the pre-
dicted range value if necessary and continues. If the
objects are different, it notes which of them is on top
and updates both the range value and the object num-
ber.

This process gathers all the occlusion information if
there are no more than two objects along any one ray.
If there are three or more, however, the occlusion
relationships obtained depend on the order in which
the hypothesized objects are processed. For example,
let us consider Fig. 32. If object 1 is processed by the
range prediction software first, object 2 next, and ob-
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Fig. 33. Graph of the “on top
of " relationships for the
hypotheses in Fig. 27C.

Ject 3 last, the relationships that would then be com-
puted are that object 2 is on top of object 1 and that
object 3 1s on top of object 2. The fact that object 3 is
on top of object 1 is missed. If the program kept track
of all range values along each ray, together with their
objects, it would be possible to compute all such rela-
tionships. However, the data structures required to
store this information are unwieldy. Fortunately, since
the two top objects usually occlude lower objects com-
pletely, stacks of three or more objects are not often
detected in range images. In addition, missing an oc-
clusion relationship at a pixel is not usually critical
because the relationship generally occurs at other
places in the image where the program can detect it.
In this case, missing one occurrence of a relationship
simply reduces the estimate of the amount of overlap
between the two objects— which is significantly less
detrimental than missing the crucial fact that they are
overlapping.

After the program has gathered statistics about oc-
clusions in the image, it builds a graph to represent
object interrelationships. Figure 33 displays the graph
constructed for the seven hypotheses of Fig. 27A. Fig-
ure 34 shows the information from that graph in
terms of arrows superimposed upon the intensity
image returned by the range sensor. An arrow points
from an occluded object to the occluding one. The

Fig. 34. Arrows point from
occluded castings to occlud-
ing ones.

arrows indicate, for example, that the object at the top
center of the image is lying atop two other objects.
The three objects at the butts of the arrows would not
be good choices to be picked up first because other
objects are known to be on top of them.

There may be situations where no object is on top.
All of the objects might be partially occluded by other
objects. In that case, the graph would be cyclic. Figure
35 shows two configurations of objects where none of
them is on top. In Fig. 35A two concave objects are
arranged so that they overlap each other. In Fig. 35B
three convex objects are arranged so that all of them
are partially occluded.

The information regarding what is on top of what
represents the first-level understanding of an object
configuration. A second level might be a specification
stating exactly which objects are resting on or leaning
against other objects and where they touch one an-

“other. This information would make it possible to
perform a more detailed analysis of which objects
would be moved in the course of extracting one of
them from the pile. Unfortunately, it appears too diffi-
cult to compute these relationships from predicted
range images or from 3-D models without a spatial-
reasoning system that understands gravity and the
geometric constraints associated with mutual contact
between objects.
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Fig. 35. Cyclic occlusion
relationships. A. Two con-
cave objects that overlap
each other. B. Three convex
objects that overlap one
another.

A

10. Discussion

It is interesting to note that the problem of locating
objects with six degrees of freedom in range data is re-
markably similar to the problem of using gray-scale
images to locate objects constrained to lie on a plane
parallel to the image plane. In both cases, one feature
determines most of the degrees of freedom. For exam-
ple, a circular hole in a gray-scale image determines
two of the three degrees of freedom. A circular edge in
range data determines five of the six degrees of free-
dom. Another similarity is that a partial topology of
features can be determined. In range data, the edge-
surface-edge connectivity provides a direct way to
grow clusters of related features. In gray-scale 1mages,
the corner-line-corner connectivity along edges pro-
vides a similar capability.

In the future we plan to continue our investigations
into ways of detecting features and growing clusters SO
that more and more of the recognition process can be
shifted from search methods to cluster formation pro-
cedures. This shift will lead to an increase in efficiency
because it reduces the amount of unconstrained search
required to recognize an object. We also plan to ex-
plore techniques for analyzing CAD models and se-
lecting recognition strategies and features automatically.
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