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Abstract We present a method for extracting geometric and relational structures from raw inten- 

sity data. On one hand, low-level image processing extracts isolated features. On the other hand, 

image interpretation uses sophisticated object descriptions in representation frameworks such as se- 

mantic networks. We suggest an intermediate-level description between low- and high-level vision. 

This description is produced by grouping image features into more and more abstract structures. 

First, we motivate our choice with respect to what should be represented and we stress the limitations 

inherent with the use of  sensory data. Second, we describe our current implementation and illustrate 

it with various examples. 

1 I n t r o d u c t i o n  and m o t i v a t i o n  

One of the fundamentals goals of computer vision is to interpret an image in terms of scene objects 

and relationships between these objects. One major difficulty associated with this task is that the 

image to be analysed and the objects to be recognized are embedded in two different representation 

frameworks. 

On one hand, an image is a collection of pixels, each pixel being the 2D projection of a scene 

event. Hence, the task of the low-level processing is to make explicit the local image geometric and 

relational properties that are likely to represent local scene geometric structure. 

On the other hand, an object is a collection of 3D primitives and relationships between these 

primitives. This representation must be transformed such that visually salient object features are 

made explicit. Then, the task of high-level vision is to match object descriptions against image 

descriptions. 

In this paper we propose to investigate the image description the best suited for high-level tasks. 

We analyse the desired properties of this description from two viewpoints: 

1. What should be represented in an image for successful scene interpretation? 

2. What could be properly detected in an image? 

Therefore our work is at the crossroads of low-level and high-level vision. We call this image de- 

scription an "intermediate-level description," or InterLevel, because it embeds both feature detection 

and feature grouping. Feature detection is essentially a bottom-up process while feature grouping 

makes some assumptions about the geometry of the scene. 

The description that we envision is a hierarchy of linear segments, relationhips between these 

segments, and more abstract geometric and relational structures. The latter are groups (collections) 

of segments satisfying some sets of properties. The InterLevel description currently produced by our 

system is best illustrated on Figures 1 and 2. Figure 1 (left) is the grey level image of a relatively 

simple object on a textured background. Figure t (right) shows the straight line segments detected in 

the previous image using a classical paradigm: edge detection, edge linking, and piecewise polygonal 
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approximation. The locations shown on Figure 2 (left) with a small circle are "terminations at a 

common point" or junctions. Segments and junctions are mapped in a graph. The image may be 

further searched for groups of segments satisfying various constrMnts. Figure 2 (right) shows some 

parallelograms and some curved contours (convex chains of connected, smoothly turning lines). 

The remainder of this paper is organized as follows. Section 2 contains an overview of previous 

research efforts in the domain of feature grouping and structural description. Section 3 contains a 

description of the properties of the intermediate-level representation. Section 4 describes the current 

implementation. Finally we discuss the usefulness of our description with respect to ongoing research 

in computer vision. 

Figure 1: A grey level-image and the detected straight lines 
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Figure 2: The relational graph extracted from the above image and some simple image structures 

2 B a c k g r o u n d  

The interest for feature grouping stems from Gestalt psychologists' figure/ground demonstrations, 

[13]: Certain image elements are organized to produce an emergent figure. Zucker, [13] distinguishes 

two types of grouping. The first corresponds to the inference of one-dimensional contours. The 

second involves orientation information that is densely distributed accross areas rather than curves. 

In this paper we are concerned with the first type of grouping. 

Our work is also closely related to Marr's statement that an image contains two types of infor- 

mation [8]: Changes in intensity and image local geometry. Then, grouping is a process that makes 
both these pieces of information explicit. 

Witkin and Tenenbaum [12] defined perceptual organization as a process able to detect primitive 

structure: Those relationships we are able to perceive even when we can't interpret them in terms of 

familiar objects. Our work may well be viewed as an attempt to build such primitive structures. 

Connell and Brady [2] built a semantic network description of the image of a single object. 

The description contains both contour and region properties and relationships embedded in the 

"smoothed local symmetry" representation proposed by Brady and Asada [1]. The description thus 



376 

derived is used for learning visual object representations. With respect to the work of Brady and 

Asada, and Connell and Brady we advocate a description incorporating, among others, smoothed 

local symmetries. Unlike their semantic network, our graph contains lower-level information, i.e., 

primitive structure. Nevertheless we believe that the semantic network advocated by Connell and 

Brady can be inferred from our description. 

Lowe [6] argued that perceptual groupings are useful to the extent that  they are unlikely to have 

arisen by accident of viewpoint or position, and therefore are likely to reflect meaningful structure 

in the scene. Such groupings include collinearity, curvilinearity, terminations at a common point, 

parallel curves, etc. We will argue that the properties embedded in our description include (explicitly 

or implicitly) the groupings advocated by Lowe. Moreover, Lowe demonstrated the necessity of such 

groupings for object recognition. 

From a more practical point of view, Dolan and Weiss [3] attacked the problem of perceptual 

grouping and implemented an  algorithm which performed linking, grouping, and replacement in an 

iterative procedure. Sets of simple parametric tests were used to determine which structural relations 

were applicable to a given set of tokens. Then, a set of tokens was replaced by a simple token. 

The description of an image in terms of a structural description has been proved to be useful 

for a variety of tasks. Shapiro and Haralick [10] introduced the idea of inexact matching between 

two structural descriptions. Inexact matching is an important concept. Consider for example the 

problem of stereo matching. The two images to be matched are different and hence, their associated 

structural descriptions are also different. Finding the best match between these two descriptions is 

an inexact matching problem. Skordas [11], and Horaud and Skordas [5] showed how to cast the 

stereo matching problem into a double subgraph isomorphism problem and how to solve it. 

In conclusion previous research efforts have concentrated either on detecting groups of features 

in a complex image, or on proposing a structural image description, but not on both. In this paper 

we will argue that a representation associated with image structure is an inherent component of the 

grouping process itself. Unlike previous work we implemented a multilevel hierarchical structural 

description by which a group is built on top of less abstract groups. 

3 P r o p e r t i e s  o f  t h e  d e s c r i p t i o n  

In this section we motivate the InterLevel description with respect to two main properties: 

• its ability to constitute a reliable pointer into the memory of 3-D objects to be recognized, and 

• its robustness with respect to the image formation process and the low-level segmentation 

process. 

An image description in terms of its 2-D features is rarely an end in itself. Therefore, the 

vocabulary chosen for describing an image must contain those features and relationships that are 

likely to be.associated with 3-D shapes. Moreover, among the properties of the latter, one must 

choose those which are invariant under projection. 

Consider a 3-D object. In general, the boundary of such an object is a C 3 piecewise-smoothed 

surface. Unfortunately these surfaces do not appear directly in an image. Instead one has to deal 

with contours. There are two types of contours arising from surfaces: discontinutity and extremal 

contours. If two C 3 surfaces intersect such that at each point along the intersection the surfaces 

have distinct tangent planes, it can be shown that the intersection of the two surfaces is a C 3 edge. 

A discontinuity contour is the projection of such an edge. An extremal contour occurs whenever a 

smooth surface turns away from the viewer. 

A point of intersection of two or more edges form an object vertex. The projection of edges and 

vertices give rise to image junctions which constitute important elements for describing an image. 

Interestingly, the range of possible configurations of contours and junctions is quite restricted: Malik 

[7] suggested an analysis based on the projection of edge and vertex neighbourhoods to predict the 
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possible image configurations. Figure 3 shows a catalog of image junctions, where each junction 

represents a combination of linear and curved contours. Then, the task of our system is to detect 

these junctions and to classify them accordingly. 

discontinuity 

/ 

Figure 3: A catalog of possible image junctions 

Another important property encountered in many natural and man-made objects is local symme- 

try. The relationship between locally symmetric 3-D shape and image symmetry has been stressed 

by Marr [8], Horaud and Brady [4], and Ponce, Chelberg, and Mann [9]. It has been shown that 

under certain constraints object symmetry projects in the image to give rise to contour symmetry. 

Therefore, the detection and representation of image local symmetry is another important task of 

our system. Figure 4 shows a catalog of possible pairwise symmetric image contours. 

Figure 4: A catalog of possible image symmetric contours 

Unfortunately, the accurate detection of contours and their relationships (junctions and symme- 

tries) are affected by a certain number of undesirable and unavoidable phenomena. 

First, the image formation process is a complex one and surface discontinuities are not the only 

scene features giving rise to contours. Color, textures, shadows, and specularities give rise to equally 

important 1 contours. We beheve that the process of grouping, i.e., finding junctions and symmetries, 

partially throughs away uninteresting contours (contours that are not tight into a sought configu- 

ration). Hence, groups of contours are potentially more reliable than isolated ones. The "filtering" 

properties of grouping are stressed on the example shown on Figures 1 and 2. 

Second, another unavoidable phenomenon is occlusion. For example, a circular edge at the inter- 

section of two object surfaces may appear in an image decomposed in several pieces with relatively 

important gaps in between the pieces. This is the reason for which collinearity and co-curvilinearity 

are explidtely detected and added to our junction catalog, e.g., Figure 3. 

1In terms of their image local structure. 
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Third, low-level image segmentation (feature detection) is known to be a non robust process. 

Figure 5 shows perfect junctions and symmetries and the configurations altered by segmentation. 

J I 

Figure 5: A "perfect" image junction and junctions altered by noise 

To conclude this section, we have tried to build a collection of image features and relationships 

that are well suited for describing an image. In  particular: 

• Linear and curved contours, junctions and local symmetries are good candidates for describing 

3-D shapes, 

• Groups of image features are intrinsically less ambiguous than isolated ones. Therefore there 

will be a dramatic reduction of the complexity associated with image interpretation, 

• The process of grouping eliminates undesired isolated features, and 

• Noise and imperfect, segmentation augments the difficulty of detecting groups of features. 

Hence, robust techniques are needed for feature grouping. 

4 I m p l e m e n t a t i o n  

We concentrate now on the process of detecting geometric and relational structures. This process 

takes as input the list of straight-line segments (shortly, segments) produced by the feature detection 

process and outputs a data  structure which is the relational graph associated with the InterLevel rep- 

resentation. This graph is built on top of the initial list of segments and makes explicit relationships 

between these segments (junctions, collinearity, symmetry) as well as groups of segments satisfying 

some geometric constraints (curves, parallelograms, etc.). This graph is best illustrated in Figure 6. 

The graph is divided into two parts: The bottom level of this graph is constituted of a set of nodes 

where a node could be either a segment or an endpoint (as it will be explained later in this section, 

an endpoint is in fact a small region). Each segment has two endpoints associated with it. Two or 

several segments sharing a common endpoint form a junction. Junctions are represented implicitly 

in the bottom level of the graph or explicitly, in the top level. More generally, the top level graph 

contains such structures (i.e., combinations of nodes and arcs) as: 

• junctions or termination at a common endpoint; 

• curves which are sequences of connected segments i 

• ribbons which are pairs of symmetric segments with the region in between them and 

• other objects that can be built on top of these basic ones: pairs of symmetric curves, junctions 

combining curves and segments, parallelograms, sets of equally distant paraller lines or curves, 

chains of collinear lines, chains of co-curvilinear curves, groups of ribbons sharing a common 

symmetry axis, etc. 

The organization of this graph is motivated by practical rather than theoretical considerations. 

Indeed, robust techniques are available for line detection. This is not the case for curve detection. 

A line has a simple analytical representation while a curve has not: A curve may be described by 

equations of various degrees. An alternative for describing a curve may well be "a smooth piece 
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P:point 
S :segment 
l :junction 
C:curve / 
R: ribbon 

G) 

Figure 6: The InterLevel relational graph which describes image structure 

of contour with no first or second order discontinuity." This is the description that we'll use in the 

graph. If specific knowledge about the exact shape of an object is available, one may take the Inter- 

Level curve description and fit it with the desired model. In the following paragraphs we describe in 

detail junction, symmetry, curve, parallelogram detection, and symmetry grouping. 

4.1 J u n c t i o n  d e t e c t i o n  

An image junction is a set of lines terminating at a common point. In practice however, the lines 

rarely terminate exactly at the same point. Instead they terminate at a "small common region," i.e., 

Figure 7. Hence the difficulty of detecting junctions is twofold: 

• the complexity of considering all subsets of lines as potential junctions, and 

• the lack of a simple mathematical definition of a set of lines terminating at a common region. 

\ /  
. , ,  +t. .i 

Figure 7: A junction is characterized by a set of lines terminating at a common region. The param- 

eters of angle detection. A local configuration of segments. 

In order to reduce the complexity mentioned above we build a simple data structure which consists 

of associating with each image pixet the information of whether there is a segment located at that  

pixel or not. If there is a segment, the data structure indexes it in the segment list. Then, for any 

image neighborhood one can quickly determine the list of segments with their endpoints terminating 

at this neighborhood. 

It is easy now to determine the complexity of junction detection. Let n be the number of image 

lines and a be the average number of endpoints in the neighborhood of a line. The complexity is 

bounded by 2 × a x n since each segment has two endpoints. Next we describe a two-stage method 
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for detecting junctions: angle detection and angle grouping. Then we consider the special case of 

collinear lines. 

Angle detect ion.  An angle is a two-line junction. Consider an endpo!nt el associated with a 

segment ll and a neighborhood of size w × w pixels centered at this endpoint. Let 12 be another 

segment such that it has an endpoint e2 lying in the neighborhood. Let q be the point of intersection 

of 11 and 12. Let dl be the distance from el to q and d2 be the distance from e2 to q. Let 0 be 

the value of the angle between the two segments. Segments 11 and/2 form an angle if the following 

conditions are satisfied, Figure 7: 

1. el < 0 < ~ ' - e l  

2. dl < w/2 

3. d2 <_ w/2 

4. q falls outside the segments 11 and 12 

5. Test that there is no other line crossing elq and e2q 

Condition 1 guarantees that the fines are not coUinear or do not form a very sharp angle (which is 

unlikely to represent a scene property). Conditions 2 and 3 guarantee that the point of intersection 

of the two considered segments lies within the "small region." For example, when applied to the 

configuration of Figure 7, only the pair 11 and 12 will be selected as an angle. 

Angle  grouping.  Once all the angles have been detected, junction detection is quite straightfor- 

ward. The principle of grouping is that two angles that share a common fine and whose tips are not 

too faraway are fused into a unique junction. First a junction is initialised with an angle. Second 

the list of remaining angles is examined and angles are added~ one by one, whenever they satisfy the 

above condition. 

Detec t ing  collinearity. Colinear lines are treated separately because one cannot always find the 

intersection of two collinear or almost collinear lines, i.e., Figure 8. Sometimes this intersection is 

simply not significant. Let again 8 be the value of the angle between two segments, ll and 12 and 

let el and e2 be their closest endpoints. Let dl be the distance from el to 12 and d2 be the distance 

from e2 to 11. Let I be the amount of overlap of the two lines, i.e., Figure 8. The two segments are 

colhnear if the following conditions are satisfied: 

1. 8 < e l  or 1 r - e l  < 0 < r  

2. l < max_overlap 

3. max(d1, d2) _< w/2 

..................... i x e 

I 

Figure 8: Pairs of "almost" collinear lines to be detected and the parameters of detecting these pairs. 
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4.2 C u r v e  detection 

Once the junctions are properly detected and mapped into the graph representation described above, 

one can build other image structures such as curves. A curve may be defined as a sequence of con- 

nected segments (the extremity of a segment and the origin of the next one in the sequence belong 

to the same junction). Let 0i be the value of the angle between two consecutive segments in such a 

sequence. The sequence is a curve if the following conditions are satisfied: 

1. ~2 -<1 o~ I_< ~/2 - e~, 

2. I e~ - ei+a I< e3 

3. 0~ 0~+1 > 0 

4. The  curve  is m a z i m a l  

Conditions 1 and 2 guarantee that the sequence turns "smoothly" and condition 3 gurarantees 

that there is no convexity change along the sequence. A maximal curve is a curve that cannot 

be extended to include another segment. The technique for detecting sequences with the above 

properties is based on a classical recursive graph traversal algorithm. This algorithm starts with a 

two-segment sequence and tries to extend it by exhaustively exploring the graph. 

Let j be the number of junctions in the image and d be the average number of segments of 

each junction. The number of two-segment sequences is j × d × (d - 1). Hence the complexity of 

finding a curve with L segments is: j × d × (d - 1) x (L - 2) x (d - 1). In practice, d is bounded 

by 5 and the most likely value for d is 2. Therefore d × ( d -  1) x ( d -  1) is bounded by a constant yalue. 

4.3 S y m m e t r y  detection 

Following the "smoothed local symmetry" definition in [1], the symmetry axis of two lines is the 

bisector of their angle. For two segments to be symmetric, they must have some amount of overlap. 

Referring to Figure 9, where 11 is the length of one segment, t~ is the length of the other one, and l 

is the length of their overlap, we must have: 

1. 112-Il l<e4 

2. ! (12 + l~)12 -- l I < - ~5 

Two segments together with the region in between them are called a "ribbon". One may further 

combine ribbons and build more complex symmetries. 

Figure 9: The definition of the local symmetry associated with two straight-line segments 

4.4 F i n d i n g  p a r a l l e l o g r a m s  

The task of finding all pairs of symmetric segments in the image is a costly one, i.e., proportional to 

the squared number of image segments. The detection of parallelograms is an example of a simple 

use of symmetry. 
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Figure 10: Another image of the mouse and the obtained structures. 
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Figure 11: The pairs of symmetric lines (left) and a group of line-pairs with parallel symmetry axes 

(right). 

We define a parallelogram as a sequence of four segments in the graph such that the first one is 

symmetric and parallel with the third one and the second one is symmetric and parallel with the 

fourth one. Notice that "symmetric anal parallel" is just a particular case of the symmetry defined 

above. In our implementation we allow the side of such a parallelogram to be a meta-segment, that 

is, a sequence of collinear segments. 

The technique for finding parallelograms is as for curve detection, a variation of a recursive graph 

traversal algorithm. For each junction and for each pair of segments (or meta-segments) within each 

junction we investigate all the segments .(or meta-segments) that are connected to the initial pair 

and we select those four segmentb (or meta-segments) which could form a parallelogram. 

To compute the complexity of this parallelogram search, let again j be the numberof  junctions 

and d be the average nufilber of segments forming a junction. The number of segment pairs is 

(different than the number of two-segment sequences): ~ j x d/2 x (d - I). The cost of searching 

parallelograms is: j x d/2 x ( d -  1) x 2 x ( d -  1) = j x d x d x ( d -  1). Since d is bounded by a 

small constant value, the cost is a linear function of the number of image junctions. 
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Figure 12: The image of a pair of cisors and the detected curves. 

C:3 ~ ~_-J c-:3 [2~ 

Figure 13: The INRIA office image and the rectangles found by our system. Notice that the system 

have detected many rectangles that do not have a semantic interpretation. 

4.5 E x a m p l e s  

We have run our system over a large database of images. The mouse of Figure 1 is shown from 

a different viewpoint on Figure 10 (top-left). There are also shown on this Figure the segment-and- 

junction graph (top-right), the sets of collinear segments, or meta-segments (bottom-left), and curves 

and parallelograms finally detected (bottom-right). Figure 11 shows all the pairs of symmetric lines 

(left) and a set of line-pairs with parallel symmetry axes (right). 

Two more interesting examples are provided by the image of a pair of cisors, e.g., Figure t2 with 

the detected curves, and by the INRIA office image and the rectangles detected here, e.g., Figure 13. 

It is important to notice that the same processing (the Same edge detector and line finder) with the 

same set of parameters have been used over the whole image set. It takes approximatively 10 seconds 

to entirely process a 256 by 256 image on a Sun 4 /60 :8  seconds for edge detection and line finding 

and 2 seconds for grouping. 

5 C o n c l u s i o n s  

In this paper we presented a method for extracting geometric and  relational structures under the 

form of a graph representation from raw intensity data. This graph is shown on Figure 6 and some 

image structures are shown on Figures 2, 10, 12, and 13. This graph may well be viewed as an 

intermediate representation between low- and high-level vision. The information embedded in the 

graph is useful for a variety of tasks. 

Object recognition is often mapped into a graph matching problem: The sensory data is compared 

with object models. Currently we are investigating techniques for performing sub-graph isomorphism. 

Another domain of computer vision for which our graph is a useful representation is visual learn- 

ing. Consider for example the mouse object shown on both Figure 1 and Figure 10, and the graphs 

associated with these images. Is it possible, by comparing these two graphs, to derive a description 
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of the "mouse"? 
Finally, we investigate techniques for combining the representation advocated here with camera 

motion in order to infer a 3-D version of the graph. This may be useful for modelling 3-D objects or 
for building scene descriptions in general. 
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