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Using quasi-invariants for automatic model building

and object recognition: an overview.

Patrick Gros
LiriAa - INRIA Rhone Alpes
46, avenue Félix Viallet, 38031 Grenoble Cedex 1, FRANCE

Abstract

We address the problem of automatic model building for
further recognition of objects. Our initial data are a set
of images of an object. In a first stage, these images are
put into correspondence using quasi-invariants, epipolar
geometry and an approximation of the apparent motion
by an homography. The different aspects of the objects
may thus be computed and each aspect gives raise to a
partial model of the object. In a second stage, these mod-
els and indexed in a data base which is used for recogni-
tion. This work is based on the idea that aspect graphs
may (should?) be learned from examples rather than
computed from CAD models, and that a planar repre-
sentation associated with geometric quasi-invariants is a
relevant tool for object recognition.

1 Introduction

This paper takes place in the frame of object recognition.
This problem may be stated as follows:

e a system contains some “knowledge” about a collec-
tion of objects;

e when a new image is given to it, the system can de-
termine if some of those objects are present in this
image.

Usually the knowledge contained by the system is a set
of what is called models, one for each objet, organized in
a data base. When designing such a system, one has thus
to decide which information is necessary to recognize an
object, how this information can be obtained, i.e. how
the models have to be computed.

The applications of such a system in a robotic environ-
ment are numerous: recognizing objects allows a robot
arm to grasp them, a mobile robot to keep away from
them when moving or to recognize its position accord-
ing to high level markers. Furthermore, recognition is a
bridge between low level environment description in terms

of free space and shapes, and a high level description in
terms of objects, rooms and ways.

The current approaches to this modeling problem may
be classified according to two criterions: the kind of data
used to construct the model and the dimension of the
model constructed. Data may be 2D or 3D, man made
or obtained from a sensor. The model may be 2D or 3D.
Such a classification is presented by Flynn et al. [FJ91]
and is used here to compare the different systems.

3D man made data: they usually come from a CAD
system. The data are made of a description of the ob-
ject in terms of its geometrical and mechanical properties.
The problem is thus to infer the object visual aspects from
these data. The model building step using CAD data has
been intensively studied, creating a new field of vision

called CAD-based vision [Bha87].

2D man made data: another way of using CAD
data is to compute the 2D aspects of the modeled ob-
ject [KDT79, PPK92]. Each aspect is topologically differ-
ent from the others and they are organized in a graph
called aspect graph according to their associated view-
point. The model of the object thus consists of the set of
all its aspects. Even simple objects may have several tens
of different aspects.

3D sensed data: they concern mostly two fields of
vision: medical imagery using 3D volumetric sensors and
robotic applications using 3D range sensors. In the first
case the sensor gives a complete 3D image, while it gives
only a depth map from a given viewpoint in the second
case. Surveys of these techniques are given by Besl [Bes88]
and Nitzan [Nit88].

2D sensed data: these data are usually images of the
object to be modeled, taken from different viewpoints.
Modeling and recognition systems using such data are
very numerous. They differ in the kind of information
they extract from the images, and in the dimension of
the model (2D or 3D). Connell and Brady [CB87] use
intensity data, Arbogast [AM91] uses occlusion contours,
Mohr et al. [MVQ93] use points, Rothwell et al.[RZFM92]

use numerical invariants associated with some configura-



tions of points, lines and curves, Weiss uses differential
invariants associated with algebraic curves [Wei92].

Our approach falls in the last category. It relies on the
idea that aspect graphs should be learned from exam-
ples rather than computed from CAD models, and that
a planar representation associated with geometric quasi-
invariants is a relevant tool for object recognition.

The input consists of a large set of images. These im-
ages represent the object to be modeled and are taken
from different viewpoints. The aim of the method is to
find out which of these images represent the same aspect
of the object. Such images belong to the same view of
the object, and all these “characteristic” views form the
object model.

Our method relies upon the matching of images one
with another: two images represent the same object as-
pect if they contain approximately the same features and
the same relationship between them. Thus we try to com-
pare the contents of the different images. As the view-
point changes between the different images, the location
of the features within the images also changes and we try
to estimate this motion in order to find a correspondence
between the features of each image.

Our method models an object directly from what can
be seen of this object in images. In this it differs from the
methods based on CAD data. With these methods, the
main problem is to infer visual information from geomet-
rical properties. This inference is usually not satisfactory
and is a weakness of the method. Furthermore, the use
of aspect graphs adds another problem: the number of
theoretical aspects of an object is much greater than the
number of its visual aspects. Theoretical aspects very of-
ten differ only in unsignificant details. The complexity of
these methods is a real obstacle. Bowyer gives a complete
criticism of these methods [Bow91]. On the contrary, our
method has a pragmatic notion of aspect. The different
aspects are separated according to their visual dissimilar-
ities, and not to their topological differences.

With respect to the methods using 3D models com-
puted from 2D sensed data, our method avoids the re-
construction and projection stages. The reconstruction
consists of computing the 3D shape of an object from 2D
information. The projection is the opposite operation,
i.e. computation a 2D visual aspect of an object from its
3D model. These two stages are complex and sensitive to
noise.

Our method is thus more natural: the data used for
modeling are 2D sensed data, so are the images to be
recognized. The built models stay as close as possible to

this kind of data.

In this paper we focus on the two main stages of the
method. The algorithm to find the correspondence be-

tween two images is described in section 2; section 3 ex-
plains how to go from these correspondences to the model,
and particularly shows the learning ability of this pro-
cess.

2 Matching sets of 2D features

2.1 The matching algorithm

The aim of matching is to find which segments of each
image are the projections of the same edge of the 3D ob-
ject. The output is a correspondence between the features
(here the segments) of each image.

Matching is a prior stage to many algorithms and usu-
ally relies on one of the two following assumptions:

1. first assumption: the motion of the camera between
the two viewpoints (or that of the object if the cam-
era is supposed motionless) is approximately known
and the location of one feature in an image may
be deduced from the location of the corresponding
feature in the second image. Foe example, this is
assumed by the systems based on correlation tech-
niques [Ana89, Fua90]. Another important case of
systems using this assumption is that of tracking.
The motion is supposed to be very small or very reg-
ular and the location of the features within an image
of a sequence may be predicted from the knowledge
of the previous images of the sequence [CS90, DF90].

2. second assumption: some of the features or group
of features remain qualitatively similar. In this case,
matching is based on the search of particular features
configurations: small graphs of segments [SH92], the
whole graph of all the segments [HHVN90], symmet-
ric features [HSV90].

The first methods are quite limitated by their assump-
tion: the motion has to be approximatively known. In
many cases, especially those when the camera is not cal-
ibrated, the motion is not known at all, even if its kind
(pure rotation or translation...) is known. This is also
the case if the images are taken with different cameras.
The second methods are sensitive to noise. In the case of
the use of small graphs of segments, either these graphs
are too big and their configuration is never perfectly con-
served, or they are too small and are no longer discrimi-
nant.

Our method is based on the following idea: matching
would not be a problem if corresponding features were in
the same place in the two images to be matched. This
difference of position is called “apparent motion”. This
motion is not a classical geometric transformation because



two different features in one image can correspond to only
one feature in the second one. On the other hand, in
many cases, it can be approximated by a transformation
like a similarity or an affine transformation. Our method
consists in computing such an approximation. It does
not assume that the camera motion is known or that it is
very small. It also works with noisy images or occluded
objects.

The different stages of our matching method are the
following:

1. We have two images containing line segments approx-
imating contour curves. We assume that segments’
apparent motion between the two images is a sim-
ilarity (resp. an affine transformation). We asso-
ciate numerical invariants to some feature configura-
tions: angle and length ratio defined by every pair
of segments having an extremity in common (resp.
affine coordinates associated with every set of four
connected segment vertices).

2. Invariants and their corresponding segments and ver-
tices are matched according to the invariants’ value.
As there is some noise in the images, equality is
tested up to a noise threshold, in consequence of what
all matches are not right.

3. To eliminate wrong matches, a Hough transform
technique is used, in order to evaluate the parame-
ters of the approximation of the apparent motion. As
a matter of fact, the right matches define the same
approximation and the computation of this motion
allows to recognize them. When two invariants are
matched, there is enough geometrical information to
compute the transformation. In our case, when two
configurations are matched, it is possible to compute
the parameters of the similarity (resp. the affine
transformation) which transform one of the two con-
figurations into the second one. Such a computation
is done for all the matches done at stage 2, whether
they are right or wrong. In this way, each match
gives a point in the transformation parameter space.

4. The points corresponding to wrong matches are dis-
tributed almost uniformly in the parameter space.
This is because they are not correlated. On the con-
trary, the points corresponding to right matches de-
fine all the same real transformation parameters up
to a noise factor. Thus they give many points in a
small region of the space. This “accumulation point”
may be found easily and define the best estimate of
apparent motion. Every match which gives a trans-
formation far the best estimate is eliminated.

5. The match between the individual segments are de-
duced easily from the matches of segment pairs.

2.2 Experimental results

In this paragraph, we provide some results that show that
the algorithm is robust, even when the apparent motion
is far from an exact similarity or affine transformation.

Figure 1 shows the match obtained with two images.
The corresponding vertices have the same number in the
two images. The two upper images were matched using
similarity invariants, while we used affine invariants in the
two lower images. The first image contains 132 vertices,
the second one 105. With the similarity invariants, we
obtained 24 correspondences and 25 with the affine in-
variants. In both cases, all the correspondences are right.

After this first matching stage, it is now possible to
compute the epipolar geometry of the two images, or an
approximation of the apparent motion by a homography.
This information may then be used to detect any eventual
wrong match, and to find other correspondences.

3 From matching to modeling

3.1 The modeling algorithm

The matching algorithm is the central point of our
method. As a matter of fact, it allows to find the char-
acteristic and robust features of one object represented
in two noisy images. A model of this object to be used
in a recognition system has to contain this information:
the robust and characteristic features that will appear in
every image where the same aspect of the object is visible.

The only problem is that two images may not be suffi-
cient to recover the whole characteristic structure of one
aspect of the object if they are very noisy. In the case
where we have three or more images, we use the following
stages:

1. the images are matched two by two;

2. as incoherences may occur, we compute a global
match;

3. the features that appear at least in 60 percents of
the images are put in the model; the position of the
modeled feature is the average of the corresponding
features in the images, after correction of the appar-
ent motion by an homography.

This algorithm assumes that the three images repre-
sent approximately the same aspect of the object. In the
opposite case, we add two more steps:

1. the images are matched two by two and the distance
between two images is defined as the percentage of
matched features;
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Two images matched using affine invariants

Figure 1: Experimental matching results

2. all the distances are put in a distance matrix and an
agglomerative clustering algorithm is used to gather
the images according to the aspect of the object they
represent;

3. a global match is computed for all the groups found
at the previous step;

4. one model is deduced from each group; in this case
the model of an object is composed of a set of partial
models.

In both algorithms, the most difficult step is the one
consisting in going from the first matches to a global
match. To do that, we represent the different matches as
a graph; the vertices of this graph are the features of each
image, and the edges represent the correspondences. We
then consider the different connected components. They
usually contain to many features, and we cut them up in
more strongly connected parts until they reach an accept-
able size. Two vertices a and b are strongly connected if
they are connected and if there exist some other vertices
¢; which are connected with both a and . The degree of
connectedness is then given by the number of the existing
vertices ¢;. A component is of acceptable size if it con-
tains at most one feature of each image and at least 0.8n
features where n is the number of images.

3.2 Towards recognition

As this part of the work is still under development, this
paragraph only gives an overview of the subject. For each
object we want to recognize, we learn its model from a set
of images, taken from various viewpoints. All the models
all gathered in a model base.

The recognition problem may then be solved as a cor-
respondence problem between a model and a new image.
The matching algorithm presented in section 2 may be
adapted with this aim in view.

For a kind of transformation (affine or similarity), the
invariants of all models are put in a single table. Some in-
variants are also computed from the image and compared
with the first ones. When a correspondence is found, that
gives a vote to a model. This vote is expressed as a point
in a transformation parameter space. When all the pos-
sible correspondences are made, we count the coherent
votes of each model, following the method presented in
section 2.1.

This allows to predict the models which have the great-
est probability to appear in the image. This has to be
followed by a verification stage. The features correspond-
ing to the model are removed from the image, and the
process may be repeated to find another object.
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Figure 2: Models of an object computed from respectively 2, 4, 6, and 8 images of it.

3.3 Experimental results

Some results obtained with the second algorithm of sec-
tion 3.1 are provided in [Gro93]. So, we show here some
results using the first one.

The model of an object is computed from respectively
2,4, 6, and 8 images of it. These images are of the same
quality as the ones shown on Figure 1. Figure 2 shows
the results.

It is clear that the most numerous the images are, the
best the result is. The model is learned from the images,
and all noise is eliminated. A few segments of the object
are missing: one could thought that were a important
part of the object structure; in fact, they are not reliable
with respect to the acquisition device.

4 Conclusion

In this paper are presented a algorithm for image match-
ing, in the case where images contain line segments, and
a method to construct a model from a set of images of an
object.

Even if the learning ability of this last method is clear
according the provided results, the use of such models
in a recognition system causes other difficulties, like fast
indexing, that have still to be studied.

The main contributions of this work are:

e the use of local quasi invariants as a robust and dis-
criminant feature in images; they have proven to
be more usable than topological structures like sub-
graphs or even than exact invariants which are sensi-
tive to noise and difficult to compute for non trivial
objects;

e a new matching algorithm which works for images
containing segments, even if the motion of the cam-
era is unknown; this geometric method is a real al-
ternative to the often used correlation and relaxation
techniques;

e a method for “modeling from examples”, which can
compute a model for the main aspects of an object
without computing the aspect graph of the object
from a CAD model.
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