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Towards the Embedding of On-Line Hand-Eye Calibration into VisualServoingNicolas Andre�INRIA Rhône-Alpes / IMAG { GRAVIR655, avenue de l'Europe, 38330 Montbonnot, FRANCEAbstractThis work is related to the visual servoing of a robothand-mounted camera. The control law of this roboticsystem exhibits the necessity of determining the posi-tion/orientation of a camera reference frame with res-pect to the control reference frame. The hand-eye cali-bration consists in the determination of this transfor-mation (i.e. a rotation and a translation).We provide in this paper an on-line calibrationmethod in two stages: �rst, an initial estimation iscomputed with two self-calibration movements, thenthe estimated hand-eye transformation is updated us-ing the controlled motions of the robot. As the lat-ter generate low amplitude rotations, the classical for-mulations are not e�cient any more. The homoge-neous matrix equation AX=XB appearing in usual ap-proaches is therefore reformulated into a linear systemand used as a basis of a Kalman �lter which is to berun in parallel with the visual servoing.Preliminary simulation results were obtained andshow the good behaviour of the method.1 IntroductionTo control a robot by visual servoing, one has to knowor to estimate several parameters ruling the controllaws. In the case of a visual system rigidly mountedonto a robot arm, some of these parameters are relatedto the robot itself (robot calibration), some to the vi-sual system (camera calibration) and some to the spa-tial relation between the robot and the visual system(hand-eye calibration).More speci�cally, hand-eye calibration consists indetermining the rigid transformation (i.e. a rotationand a translation) between a robot reference frame(usually, the end-e�ector frame) and the visual sys-tem reference frame (usually, in monocular systems,the camera frame).The current approaches [1, 2, 6, 7, 9, 10, 11, 12]operate within a standard o�-line calibration scheme.However, we would like to free ourselves from the hu-man intervention required by such approaches. Thegoal of this paper is therefore to propose an on-line

calibration method, i.e. without a-priori knowledgeor any calibration object (self-calibration), and duringthe accomplishment of the robotic task.From the viewpoint of a self-calibration procedure,the current solutions su�er from the drawback to needlarge motions with signi�cant di�erences between eachother, i.e. the rotation axis associated to each dis-placement should be di�erent from the rotation axesof the other movements. Moreover, the higher accu-racy in the estimation of the hand-eye transformationis demanded, the more motions are required ! Themethod we propose consists of a self-calibration stagewhere only two prede�ned movements are needed fol-lowed by an on-line updating stage using the controlledrobot motions.The previous approaches use either the axis/angleor the quaternion representations of a rotation to solvethe well-known AX = XB homogeneous matrix equa-tion, and thus, need to avoid robot and camera mo-tions with low amplitude rotation. (An exceptionis [9] where a method is presented which avoids theAX = XB formulation, but requires a non-linear min-imization performed with the Levenberg-Marquardtalgorithm.) However, controlled robot motions willbe of low amplitude and will only contain small ro-tations. In the axis/angle representation, this meansthat the robot motions will have a rotation angle closeto 0�, where the rotation axis can not be de�ned. It istherefore interesting to �nd a new formulation of thehomogeneous matrix equation which will lead to thebuilding of a Kalman �lter.The remainder of this paper is organized as follows:section 2 is devoted to the problem formulation, sec-tion 3 contains a complete set of simulation results andsection 4 is the conclusion.2 Problem formulation2.1 Visual servoing and hand-eye cali-brationRecall the simplest visual servoing control law underthe task-function approach with exponential conver-1



A

X

X

BFigure 1: Two positions of the same hand-eye systemlinked by a camera displacement A associated to arobot motion B via the hand-eye transformation X.gence [4]: ( ~Tc = ��~e~e = LT+(~s�~s�)where ~Tc is the kinematic screw applied to the robot(expressed in the end-e�ector frame), � is a gain factor,~e is the task function (to be regulated to 0), LT isthe interaction matrix (expressed in the end-e�ectorframe) and ~s (resp. ~s�) is the current (resp. desired)image primitive.The interaction matrix LT is a function of the cam-era intrinsic parameters (namely, the scale factors �uand �v , and the angle � between the image axes), acanonical interaction matrix expressed in the cameraframe (LTc , see [4] for details) and the hand-eye trans-formation (X = (RX ; ~tX)):LT = � ��u �ucotg�0 � �vsin� � � LTc �� RX �RXAs(�RXT ~tX )0 RX �where As(�) denotes the skew matrix.The intrinsic parameters are allowed to be onlyroughly determined since they do not have a strong in-uence on the stability of the system. However, hand-eye transformation has to be accurately estimated [3].A way to obtain it is to consider a pair of robot andcamera positions (see Figure 1).As the robot performs the rigid motion B =(RB ; ~tB), the camera undergoes a displacement de-termined by the rigid transformation A = (RA; ~tA).A and B are related by:AX = XB (1)The latter equation is an homogeneous matrix equa-tion and, thus, can be rewritten as one equation deal-ing with the rotational part and another with the

translational part:RX �RARXRBT = 0 (2)RX ~tB + ~tX �RA ~tX = ~tA (3)We assume for the rest of this paper that the robotmotion is measurable and that the camera motion canbe estimated.Since controlled motions often contain small rota-tions, the purpose of the method proposed here is todeal with such ill-de�ned cases. To achieve this goal,the homogeneous matrix equation (1) can be reformu-lated as a linear system of the form:C~x = ~ywhere ~x is a 12-vector containing the 9 coe�cients ofthe rotation matrix RX and the 3 coe�cients of thetranslation ~tX .2.2 New formulationDe�ne ~i, ~j and ~k, the row vectors of the rotation RX ,RX = 0B@ ~iT~jT~kT 1CA and ~x = � ~iT ~jT ~kT ~tXT �T .With these notations, equations (2) and (3) are rewrit-ten as: � I9 �M 09�3N I3 �RA �| {z }C ~x = � ~09�1~tA �| {z }~y (4)whereM = 0@ RA(1;1)RB RA(1;2)RB RA(1;3)RBRA(2;1)RB RA(2;2)RB RA(2;3)RBRA(3;1)RB RA(3;2)RB RA(3;3)RB 1A ;N = 0B@ ~tBT ~01�3 ~01�3~01�3 ~tBT ~01�3~01�3 ~01�3 ~tBT 1CA;In is the (n � n) identity matrix and the notationRA(p;q) means the coe�cient located on the pth rowand the qth column of matrix RA.The previous expression is derived by expanding thematrix equations (2) and (3). This exhibits linear rela-tions between the coe�cients of vector ~x. Then, theserelations just have to be collected into the linear sys-tem above.This formulation does not ensure that the estimatedrow vectors~i,~j and ~k will ful�ll the orthogonality con-straint on the rotation matrixRX . However, it has theadvantage of o�ering a linear expression of the prob-lem, thus allowing the use of a Kalman �lter. As forthe orthogonality constraint, it will be discussed insection 2.5.2



2.3 Kalman �lterA Kalman �lter is built upon this model and the as-sumption that the rigid transformationX remains con-stant as: � ~xk+1 = ~xk + ~v(k)~y(k) = Ck~xk + ~n(k) (5)where the subscript k denotes the value after the kthrobot/camera motion, ~v represents the noise inducedby modeling errors and ~n represents the noise in themeasurements. ~x is de�ned in (4) and will be referredto as state vector in the following. ~y is called the mea-surement vector and is also de�ned in (4).A solution of this �lter is given by:P(0) = G0K(k) = P(k)C(k)T �C(k)P(k)C(k)T +G2��1P(k + 1) = P(k) +G1� K(k) �C(k)P(k)C(k)T +G2�K(k)T~x(k + 1jk) = [I12 �K(k)C(k)] ~x(kjk � 1)+ K(k)~y(k)where ~x(k + 1jk) is the estimate at time k + 1 of thestate-vector ~x, knowing all the required information attime k. G0 is an initial estimate for P (which is takenas I12), G1 is the covariance matrix associated to thenoise ~v in the state equation and G2 is the covariancematrix associated to the noise ~n in the measurementequation.An initial estimation is needed in this method. Inorder to cope with the desire of keeping the number ofself-calibration movements low and still have a goodprecision for this initial estimation, the best thing todo is to use one of the classical methods with only 2movements.2.4 A model of noiseIn the Kalman �lter noises appear that we must model.The following assumptions will be made: ~n and ~v areuncorrelated, robot motion is free of noise (which isnot too much of an assumption since the uncertaintiesin the robot motion are transferred into the unknownhand-eye transformation), and, �nally, the camera mo-tion estimation process is not required to ful�ll theorthogonality constraint on the rotation matrix. Thelatter assumption allows one to use additive noise oneach coe�cient of the camera rotation matrix insteadof additive noise on the rotation angles, thus simplify-ing the analysis.As ~n and ~v are uncorrelated, it is straightforwardto set ~v as a Gaussian noise with a diagonal (12� 12)covariance matrix G1. Then, we can express the noise~n in the measurement equation. To achieve this goal,

�rst insert noise in the camera motion:RA = ~RA +�a~tA = ~~ta + ~vawhere the notation ~� represents the estimated or mea-sured value and where �a and ~va are uncorrelatedGaussian noises and have respective covariance matri-ces �1(9� 9) and �2(3� 3). Then, feed equations (2)and (3) with the latter two equations and obtain:RX � ~RARXRBT = �aRXRBTRX ~tB + ~tX � ~RA ~tX = ~~ta + ~va +�a ~tXFor the purpose of analysis, assume, temporarily,that RX and ~tX are known. Denote ~va0 = ~va+�a ~tXand ~�a the vector form of �aRXRBT :8(i; j) 2 f1; 2; 3g2; (~�a)3(i�1)+j = (�aRXRBT )ijHence, ~n = �~�aT ; ~va0T�T .The covariance matrix associated to ~n according tothe noise model is:G2 = � VT�1V VT�1WWT�1V �2 +WT�1W �where V = 0@ RXRbT 0 00 RXRbT 00 0 RXRbT 1Aand W = 0B@ ~tXT 0 00 ~tXT 00 0 ~tXT 1CA :AsRX and ~tX are unknown andRB is time-varying,they are approximated by: RX � I3, ~tX � 0 andRB � I3. Under this approximation, the covariancematrix G2 is chosen as: G2 = � �1 00 �2 �2.5 From Kalman state vector to rigidtransformationAfter each iteration (i.e. robot/camera motion), theKalman Filter above determines a new state vector~xk. This state vector contains, as seen earlier, thecurrent estimation of the 3 row vectors (~i, ~j and ~k) ofthe rotation matrix RX and the current estimation ofthe translation vector ~tX .However, it is not granted that the estimated rowvectors satisfy the necessary condition of orthonormal-ity. As the raw estimates can not be used as an ap-proximation of a rotation, an orthogonalization has to3
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Figure 2: Error in the recovering of a rotation ma-trix according to several methods: SVD decomposition(dashed line), QR decomposition (dash-dotted line)and minimization (solid line).be made. In order to keep the optimal convergenceof the Kalman Filter, this operation has to be appliedoutside the �lter loop.The orthonormalization step consists in �nding arotation matrix R which �ts the best the row vectors~i;~j; ~k. One can use the Gram-Schmidt orthogonaliza-tion method but it is not numerically robust. Oneshould therefore use either an SVD or a QR decompo-sition [8] or the minimization method presented in [5],which is the most robust (see Figure 2).The underlying idea of the latter method is to �ndthe rotation matrix R which satis�es:R �0B@ ~iT~jT~kT 1CAT = I3�3This problem leads to a minimization problem in thequaternion space of the form:minq (qTBq)3 Simulation resultsNow that the orthonormality constraint is guaranted,the axis/angle or quaternion formalisms can be used toquantify the simulation results. In the remaining, wewill consider: relative errors in translation, computedas k ~tX � ~~tXk=k ~tXk, errors in rotation expressed inthe quaternion representation and computed as kqX�~qXk.3.1 Sensitivity to measurement noiseIn order to study the sensitivity of the method to noisein the measurements, 50 simulations were run withseveral noise levels. Noise in the rotation part andnoise in the translation part have been studied sepa-rately.Robot motions are de�ned by choosing Roll-Pitch-Yaw angles according to Gaussian laws of standarddeviation equal to 2�=100 and translation coe�cientsaccording to Gaussian laws of standard deviation equalto 1 length unit.
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Figure 3: Evolution of the relative error in the rotation(expressed as a quaternion) with various levels of noisein the rotation: 0, 0.01, 0.05, 0.1, 0.5 and 1. Maximaland minimal errors are plotted with solid line, meanvalue errors with dashed line and RMS errors withdash-dotted line.Hand-eye transformations to be recovered are alsochosen randomly with Roll-Pitch-Yaw angles between0 and 2� and translation coe�cients have standarddeviation equal to 100 length unit.Sensitivity to noise in the rotation part. Here,the noise in the translation measurements is kept con-stant (i.e. a measurement error in the camera transla-tion ~va is randomly chosen with 0.1 length unit stan-dard deviation, which is the value expected by theKalman �lter) and 6 cases were studied. They allcorrespond to a di�erent choice of standard deviationwhile randomly choosing the measurement error in thecamera rotation �a. The chosen values for the stan-dard deviations are respectively: 0, 0.01, 0.05, 0.1, 0.5,1, while the Kalman �lter is tuned for a 0.1 standarddeviation (i.e. the correlation matrix is chosen diag-onal with non-zero coe�cents equal to 0.01). (Recallthat this noise is added to a rotation matrix, whichtherefore has unit row vectors, i.e. its coe�cients varymost of the time between -1 and 1.)Figures 3 and 4 show the results of these simulations.Sensitivity to noise in the translation part. AGaussian noise is added to each coe�cient of the cam-era translation. Fifty simulations were run for 6 levelsof noise (i.e. standard deviation equal to 0, 0.01, 0.05,0.1, 0.5 and 1).These values are to be compared with the camera4
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Figure 4: Evolution of the relative error in the transla-tion vector with various levels of noise in the rotation:0, 0.01, 0.05, 0.1, 0.5 and 1. Maximal and minimal er-rors are plotted with solid line, mean value errors withdashed line and RMS errors with dash-dotted line.translations. However, it is not easy since they de-pend on the robot motions and the hand-eye transfor-mation. Nevertheless, we can have an idea of the am-plitude of the camera translations. Recalling (3) andapproximatingRA by the identity matrix in it leads to~tA � RX ~tB , thus considering that camera and robottranslations have almost the same amplitudes. In thepresent case, they have standard deviation equal to 1.Figures 5 and 6 show the results of these simulations.3.2 Sensitivity to initial estimateThis section deals with sensitivity to initial estimates.In order to study it, the reference hand-eye transfor-mation was disturbed by adding white noise to its Roll-Pitch-Yaw angles and to its translation coe�cients.The standard deviation of these disturbances are de-�ned as a percentage of the standard deviation usedin the determination of the hand-eye transformation.Here again, �fty simulations were run for each of thefollowing error percentages: 0%, 5%, 10%, 50%, 75%and 100%. The results can be found in Figures 7 and 8.3.3 Realistic simulationsThe previous section shows the good numerical be-haviour of the proposed method, but it still remains tostudy more realistic cases. Aiming to this, one shouldchoose a realistic initial estimation of the hand-eyetransformation then use it with realistic robot motions.
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Figure 5: Evolution of the relative error in the rotation(expressed as a quaternion) with various levels of noisein the translation: 0, 0.01, 0.05, 0.1, 0.5 and 1. Max-imal and minimal errors are plotted with solid line,mean value errors with dashed line and RMS errorswith dash-dotted line.Computing an initial estimation. As discussedabove, this method can not completely free itself fromthe classical approaches since it needs an initial esti-mation of the hand-eye transformation, but it requiresa smaller number of calibration movements. Here, twomethods are compared: the 'historical' one [11], basedon the axis/angle representation of the rotation and[2] which is based on a dual quaternion representationof the rotation. The accurate non-linear method [7] isleft apart since it uses a Levenberg-Marquardt mini-mization, thus taking too much time for an accuracyincrease out of the present needs.Tests have been run to determine which of the twomethods should be used. They were done with variousnoise levels and, for each noise level, 500 simulationswere realized. Each simulation consisted in choos-ing randomly a hand-eye transformation, computinga disturbed camera motion from it and two prede�nedself-calibration moves, recovering the hand-eye trans-formation from robot and camera motions with bothmethods and, �nally, comparing the results (see Fig-ure 9).Realistic robot motions. In this experiment, ahand-eye transformation is chosen randomly. Then,realistic robot motions are chosen: according to thecontrol law, the components of the kinematic screwdecrease exponentially from their initial values; there-5
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Figure 6: Evolution of the relative error in the trans-lation vector with various levels of noise in the trans-lation: 0, 0.01, 0.05, 0.1, 0.5 and 1. Maximal andminimal errors are plotted with solid line, mean valueerrors with dashed line and RMS errors with dash-dotted line.
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Figure 7: Evolution of the relative error in the rotation(expressed as a quaternion) with various error percent-ages in the initial estimates: 0%, 5%, 10%, 50%, 75%and 100%. Maximal and minimal errors are plottedwith solid line, mean value errors with dashed line andRMS errors with dash-dotted line.
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Figure 8: Evolution of the relative error in the transla-tion vector with various error percentages in the initialestimates: 0%, 5%, 10%, 50%, 75% and 100%. Max-imal and minimal errors are plotted with solid line,mean value errors with dashed line and RMS errorswith dash-dotted line.
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Figure 9: Comparison of two classical approaches inthe case of two calibration moves with various noiselevels: [11] (dashed line) and [2] (solid line). Errors inrotation (left) and in translation (right) are plotted.
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Figure 10: Simulation with realistic robot motions:error in rotation (left) and in translation (right). Thehorizontal lines represent the initial errors after 2 ca-libration movements.6



fore, an initial kinematic screw is chosen randomly asthe starting point of a simulated convergent robot mo-tion. As these robot motions are determined, the cam-era motions can be computed. Noise is then added tothem and the obtained values are fed with the robotmotions into the �lter.The whole process is preceded by 2 self-calibrationmovements which determine, according to [2] (sinceprevious tests shows its higher robustness), an initialestimate of the hand-eye transformation.The results of this experiment are shown in Fig-ure 10.4 ConclusionThis was the �rst attempt to solve for the hand-eyecalibration problem in the context of a hand-mountedcamera. The linear formulation which has been pro-posed permits an on-line improvement of an initial es-timation. The latter results from the use of one of thecurrent approaches in a self-calibration scheme wherethe robot/camera set-up is only given two prede�nedmovements.The simulation results are promising, showing theinterest of such an approach. The model of noiseshould however be modi�ed to cope with noise on theRoll-Pitch-Yaw angles rather than noise on each coef-�cient of the rotation matrix. Then, it will remain toexperiment the method on a real robot, �rst with pre-de�ned robot motions then in a whole visual servoingapplication.References[1] J. C. K. Chou and M. Kamel. Finding the positionand orientation of a sensor on a robot manipula-tor using quaternions. International Journal ofRobotics Research, 10(3):240{254, June 1991.[2] K. Daniilidis and E. Bayro-Corrochano. The dualquaternion approach to hand-eye calibration. InProc. IAPR International Conference on PatternRecognition, pages 318{322, 1996.[3] B. Espiau. E�ect of Camera Calibration Errorson Visual Servoing in Robotics. In Third Interna-tional Symposium on Experimental Robotics, Oc-tober 1993.
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