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Abstract

This paper proposes a methodological framework for trajectory generation in projective space. The framework
en-ables trajectories that respect rigidity constraints of structure and motion, that are furthermore uniform and
optimal in terms of Euclidean configuration, eventhough no camera calibration is assumed.

In a projective reconstruction of the scene, obtained e.g. from an uncalibrated stereo-rig, the homography
between corresponding feature points on a rigid object in different positions is employed to represent its spatial
configuration. From its algebraic structure -it is similar to a rigid motion -decoupling of rotation and translation,
and uniform interpolation of trajectories are derived.

Speaking in robotic terms, the merely point-to-point definitions of goals, as present in current approaches to vi-
sual servoing, are extended to a guarded motion along via points on complete-path trajectories which result from in-
terpolation of a demanded type of motion. Translationonly, rotation-first, rotation-last task-functions are further
explicited.

Introduction and motivation

Computer vision in robotics started as off-line system for part-or landmark-recognition, trajectory planning or mobile
robot navigation, and computer-aided quality control. From the continuing increase in the capabilities of these
systems and especially from the decrease of run-time towards real-time, the integration of computer vision into the
on-line loop has become feasible. In consequence, the do-main of vision systems has extended to object detection,
object tracking and pose estimation for the purposes of obstacle avoidance, target tracking, execution monitoring,
and finally for position-based control. The respective control laws run an open loop which consists of successive but
well separated stages, one for determining the position of the manipulator and one for correcting this position by
actuator motions towards the control objective. These approaches are classified as “look-and-move” [6].

1.1 Closed-loop image-based approach

Further reduction of cycle time nowadays allows a full integration of dynamic visual sensor input into closed-loop
feedback control [3]. In contrast to open-loop control, a closed-loop is less sensitive to inaccuracies in calibration, is
robust to disturbances during execution, requires however careful design of its dynamics in order to ensure con-
vergence and stability [12]. Indeed, such dynamic visual servoing systems have recently been developed. They are
called ”image-based”, since the target is given merely in terms of images, e.g. by a set of image points, since the
error-function is a distance between the current and the desired configuration of these image points, and since the
control-law reduces this error by servoing a robot in closedloop mode without explicitely determining pose or spatial
structure [5]. For these control-laws, local convergence and stability in presence of calibration errors has been
demonstrated [2]. The principal deficiencies are that these approaches enable only point-to-point goals, that
trajectories are not further confined, particularly that they are not optimal, that vanishing features due to occlusion or
loss of focus often result in divergence, and that even in case of complete visibility convergence is guaranteed only
locally. All these are consequences of the fact that rigidity of structure and motion is no longer ensured when



calculations are solely image-based. More figuratively, the straight-forward descend on the gradient of image error in
P-controllers does not “look-ahead”. So, either local minima might trap the controller before reaching the final goal
or sudden changes in error due to occlusion or loss of focus cause divergence. Furthermore, trajectories induced by
image-based gradient descend are neither physically valid nor optimal, i.e. they tend to deform structure by violating
rigidity of motion and additionally fail to constrain motion to the shortest path towards the goal and direction of
approach.

1.2 Generic task-functions

In this paper, we propose a method for complete-path goal definition and subsequent generation of optimal
trajectories for image-based visual servoing. Although just weakly calibrated stereo-rigs are assumed, trajectories
respect rigidity and guarantee shortest path-to-goal. At first, trajectories are calculated in projective space from a
spatial reconstruction of the scene. They are later reprojected to the images
to serve as set-points for image-based control.

The investigated classes of complete-path trajectories

<
include translation-only, parallel-translation, rotation-first, rotation-last trajectories. A Cartesian-move mode in pro-
jective space should also be feasible. These occur quite often in pratice. For instance, the list of orders given by an
operator in video-based telemanipulation constitutes generic robotic tasks that correspond to certain trajectory

classes:
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Figure 1: Pin-hole camera model.

2.2 Intrinsic geometry

A canonical affine frame D is attached to the video-camera (CCD), such that the u-v-origin is the pixel origin, the u-
axis is parallel to pixel columns, the v-axis is again parallel to image scan-lines, and the w-axis is parallel to the
optical axis with unit length f in negative z-direction. Units on the u-and v-axis are in pixel of width 1/ku and of
height 1/kv. The transition from camera-frame C to video-frame D is by the affine transform A (Fig. 1).
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yN= ATRT X,
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The deviation of the u-axis from orthogonality to v introduces a affine skew in the focal plane by kuv .
2.3 Image projection
In D, normalization with y yields affine space coordinates [U, V, W]Tof N . Normalizing with yW results in image

continas . npvel VN ool

yuu“u

|, el lel oo

JV

lve_,le

grasp object, e.g. fix, load part

lift object, e.g. car disassembly

put-down object on table, e.g. surface mount

insert peg into hole, e.g. plug in socket

turn object, e.g. turn valve

drag object, e.g. move heavy load

parallel alignment of tool to target, e.g. driver to screw

perpendicular alignment of tool and planar target, e.g. drill normal to surface
angular alignment of tool and target, e.g. spray-can normal to surface



1.3 Outline

The paper is divided into six sections. After the introduction in section 1, some algebraic and geometric fundamentals are laid down in section 2. In section 3 the
representation of pure translations in a projective frame is investigated. An algebraic algorithm for translation-based affine auto-calibration follows in section 4,
including some consequences on the generation of point-to-point translations and R-T decomposition, both in a projective frame with known affine properties.
The relevance of the preceeding results for visual servoing is demonstrated in section 5, which develops the continuous, uniform, completepath task-function for a
straight-line translation, observed by weakly calibrated cameras. Section 6 concludes with a discussion of the presented framework.
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Fundamentals
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We will revisit this purely scalar relation between image coordinates and affine space coordinates in D in section
5. The usual formulation of perspective projection evokes now as a special case of the representation in the affine frame D, mainly because the u-v-plane is
parallel to the

@)

X = PeX,

x 2.1 Extrinsic geometry

The geometry of the scene is given in a world-frame of reference W and points X in W are in homogeneous coordinates w X =[X, Y, Z, Eﬂ A

— .k Euclidean camera-frame C is canonically attached to each camera, such that the origin of C coincides with the optical center, the z-axis co-
© '© k o incides with the optical axis, the x-y plane becomes the focal plane, parallel to the image plane, and the y-axis is parallel to image scan-lines
S 24 (Fig. 1). The displacement between world-and camera-frame is written as homogeneous transform TRT, which maps W-coordinates onto C-

coordinates: ¢ X = TRTW X,
> T

with @u=—fku, @v=-fkv: (uo,vo)is the pixel where plane equation Qaqu =0,s0 €€ =[0,0,0,1]in the optical axis hits the image plane, and
2 ©vv describes the affine coordinates. Projective coordinates of €y follow affine skew between columns and rows of the CCD: the five from
- @ applying the infinity constraint to rectified coordiintrinsic parameters of the camera. nates N =SEM

— 2.4 Projective reconstruction T .
- [0,0,01] SeM=0iff Sew,y M =0, (7)

It is well know, that from at least two uncalibrated images and eight common points, a reconstruction of the scence in which reveals the forth

focal plane (Fig. 1) .



row m%_.modﬂ SE to hold the co-a freely chosen frame R of projective three-space P(3)can ordinates of €€ in R. € rests fix under projective dis-be calculated
-T
[4], [11]. They are however a projectivity SE placements, i.e. it is an eigenvector of any H

-1
away from a Euclidean reconstruction in W yN = ASE SE X,
- Hence, its coordinates depend mainly on the

choice of the projective frame in which the scene was reconstructed.
@
yN=HAM, 2.7 Canonic representation
where M is the representation of X in R and S_is a The so far arbitrarily fixed Euclidean world-frame can be “Euclideanizing” homography X =S_M. constrained

. . . . . 1 - - -
in a canonical way, as it is done by the “Jordan canonical form” (JCF ) of similar matrices. In case of a

2.5 Projective displacements o ] o ] ) . o
projective displacement, the similarity class writes as Consider now a set of k points Xion a rigid body and

[

let this body undergo a rigid displacement TRT, such that cos¢ — sing 00

|

X ®=TRT Xi, Changing to projective coordinates -1 sing cos¢ 00

Hr

(8)

s
0011

= <w31_ RT

SE Xi=SE TRTSESE
M =y HRT Mi (5)

Xi0 001

HRT= <m_ﬂ. JRT SRT

shows that the Euclidean representation T__and the pro-where the canonical frame is such that rotation is by an anjective representation H__of one and the same
displace-gle @ around the z-axis and translation is of unit length in z-ment are related by a scaled algebraic similarity with SE direction. The x-and y-axis are
chosen mutually orthogo

H
as similarity transform (see also [13], [1]) nal in a plane perpendicular to the z-axis. This corresponds to representing HRT in the frame of normalized screw- RT

s T s .

E RT E  motion, i.e. the origin is shifted to lie on the screw-axis,

. . . . . which then coincides with the Z-axis, and scales are such
Call “projective displacements” the subgroup of projective

that the screw-pitch is of unit-length (Fig. 3). The algebraic

transforms, which are similar to a rigid displacement (Fig.



characterization of HRT is obvious from its JCF.In the general case, the only real eigenvalue is y,

2).
with algebraic multiplicity two, but geometric multiplicity one. The com-
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eigenvectors are the columns of SRT . The first two span an orthonormal basis of the x-y-plane, the third is parallel to the
z-axis. Together they form an orthogonal triad spanning Euclidean vector space.

1

3 Pure translations

By the JCF some special similarity classes of HRT are
identified. A projective translation HT is a projective

Euclidean
three-space

transform, which has a JCF Jt ww_msmg like

1000 Figure 2: Euclideanizing homography SEand
the resulting sim- . lo100 ©
=ySr
J
9)
o L o . H s
ilarity between a rigid TRTand a projective displacement HRT. T doos T
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2.6 Plane at infinity —yst S,
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A point is said to be “at infinity” iff its affine coordinates
displacement Ia
;
: & ;
y ‘.

The Jordan form is canonical up to permutations of the Jordan blocks.
-
Without loss of generality, we concentrate on the permutation as given ity form a “plane at infinity” €, which is defined by the above.

fulfill N =[U,V,W,0]. The set of all points at infin-
"
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Figure 3: Screw-geometry of a rigid displacement of a gripper (solid lines). The displacement in the original frame is drawn in dotted lines, the respective screw displacement in
dashed lines.

where y is an arbitrary scale factor. ST rectifies projective coordinates, such that translation is of unit length in z-direction.
Algebraically JT is characterized by det(JT )= 1, trace(JT )= 4, the quadruple eigenvalue ¢ =1,and the dim =3eigenspace E1 =[x, y, z, 0] , which spans
pointwise the plane at infinity € =[0, 0, 0, 1],which is at the same time the eigenspace’s orthogonal complement

4
o0

E1=0. From duality, the plane transformation corresponding to HT follows as

1000 -T00¢
HT

Jo1

| st', (20
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=1/y ST K

00 10 00-11
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Now, the dual eigenspace E =[x, y, 0,t]is the sub
1
space of planes parallel to the translation, including the plane at infinity, and the orthogonal complement N ¢ =[0, 0, 1, Sq_m the direction of translation.
The translation direction is in the point eigenspace E1 as well as the plane at infinity is in the plane eigenspace E
1

Although they cannot be distinguished from any other vector of the eigenspace, their property of being orthogonal complement of the respective dual eigenspace
allows their calculation from a given HT . We will propose an efficient algorithm for doing so in section 4.

The similarity of HT to JT by ST implies directly det(HT )=y, trace(HT )= 4y, a quadruple eigen-value ¢ = y, and a transformed eigenspace Ey =

-1
St

Xy, z, Sﬁ Analogous arguments apply to the dual transform. In the following, we introduce a reduced parameterization for a projective
translation. Based on this, the geo-
Figure 4: Projective translation HT, mapping points Mi(0) onto Mi(1). The m_@m:mumom of the point-translation HTspans the plane at infinity €1, e.g. with the vanishing points of

coordinate axis €X, €y, €zas basis. The eigenspace of the plane-translation H is spanned by the plane at infinity and

Ttwo planes parallel to the translation, e.g. €1, €xT, @yTand the vanishing point of the translation €Tis the intersection of these three planes.

metric interpretations of the parameter vectors follow easily and a factorization-based algorithm for affine autocalibration of a stereo-rig is derived. Then, a way
to calculate the projective translation between a given point pair and the decomposition of a general projective displacement into rotation and translation is
shown.

After that, the task-function of translational motion is explicited. The often found point-to-point definition of a positioning task is extended to a rigid translation
of the complete object along a continuous-path, which yields a globally admissible task-function in the image domain. The uniform, shape-preserving
interpolation of image trajectories and the incorporation of a-priori velocity profiles are finally developed.

3.1 Reduced parameterization

In the new form, the number of parameters of HT reduces to eight, four of them are fix for all translations, the remaining four characterize the present translation,
plus an arbitrary scale factor.

After writing the ooxiﬁ\odﬂ ST mw ci, the rows of ST as M , and separating the identity matrix |, equation (10) becomes:

0000 _oooo Q_ _

HT=y & mﬂ\_ +:/ mq/Ev
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yl+c3rs  (12)

=y (I +Ho). (13)
The vectors ¢3 and r4 however are not fully independant: trace(HT )= 4y follows from similarity, and consequently trace(Ho)= 0. This can likewise be seen
from

re c3=0, (14)

since ST ST N =0. Hence, Hois a “zero”-matrix in the sense that it has rank 1 and trace O.
3.2 Plane at infinity

As shown in section 2.6, r4 is the plane at infinity €€ in the projective frame R. Multiplying (12) from the left r4 "HT = y r4 "shows that r4 is a left

eigenvector of HT ,i.e. r4is eigenvector of HT to eigenvalue 1/y.In geometric terms, r4 is a fixed plane of the plane-transform

-T
Ht

. What is more, r4is a plane of fixed points, as is easily seen by multiplying (12) from the right by a point M in this plane, i.e. by a point which satisfies
r4 M =0.

3.3 Vanishing point

An endlessly continued translation of an affine point N(t) along direction vector €=[u, v, <<uﬂ results at the limit in the “vanishing point” N, which
corresponds to the direction of trgnslation

[
c+8c0_<0
le

_<+~<
Ne:=limN@®=lim  ='® (15)

Hwl
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It obviously lies in the plane at infinity Pie N =0.1ts image PN is called “focus of expansion” of the given translation.

In the affine frame of (10), translation is along the z-axis and the vanishing point becomes N =[0, 0, 1, oﬂ.@o_:@ back to the projective frame R by ST '
shows that the column c¢3 appearing in (12) holds the projective coordinates M of the vanishing point, which characterizes projective translations along this
direction, independant of their amplitude. More formally, c3is an eigenvector of HT, which is evident by multiplying (12) from the right.

To sum up, a projective translation HT depends merely on a scalar factor Smsa two vectors r4 and c¢3, which appear as a row of the rectifying homography
and a column of its inverse, respectively. They obey a single constraint r4 c3 =0. In geometric terms, c3 is the direction of translation, r4 is the plane at
infinity, and the constraint places c¢3 at infinity, i.e. it is the limit of all points :m:m_m::@ in this direction. The vanishing point c3 is eigenvector of the

point-translation HT, the plane at infinity r4 is eigenvector of the plane-translation H . The eigenspace

Tof HTis the plane at infinity and HT leaves all vanishing points unchanged. Dually, the eigenspace of HT s plane-wise fix
and consists of all planes parallel to the translation, including the plane at infinity.
5

4 Affine calibration

4.1 The algorithm
The relationship in equation (11) gives raise to a subspace method for affine auto-calibration of perspective cameras from one or more translation observed with a
weakly calibrated stereo system. In theory, affine calibration corresponds to determining the plane at infinity, which appears in Ho calculated like

Ho=HT/y -1, (16)

where y = trace(HT )/4. In each row the plane at infinity r4 appears scaled by the components of ¢3, and likewise the direction c3 appears in each column scaled
by the components of r4.

. . . e . . . . .
In practice, an estimation Ho ~ will be disturbed from fuzzy data and round-off errors. Straight-forward accumulation by componentwise sums (17) and
componentwise products (18),is potentially unstable.

[

Ho(, 1)1
U hogi, 2)
ra= " (17)
|
4 | Ho(i, 3)

i=1
Ho(i, 4)



[1/4
Ho(i, 1)

* o, 2)
ra=1? (18)

T Hog, 3) |
i=1
Ho(i, 4)
As c3 might have components close to zero, numerical effacements in (17) or instabilities due to sign changes in (18) are likely to occur. This effect has likewise

been observed when calculating det(HT) instead of trace(HT) to determine y. Even in presence of minor disturbances, the determinant became unstable.

Unlike the ill-conditioned methods above, we propose to exploit rank(Ho)= 1 in the singular value decomposition (SVD)of Ho

°
Ho

= cqg_m@ﬁr%,%_%? , (19)

T T
with U =(u1, uz, us, u4), V. =(v1, v2, v3, v4),and the singular values in descending order. The rank constraint permits to neglect a2, a3,and a4,and Ho becomes

T
Ho = qauv1

+ (20)

while at the same time minimal error __Isl Ho|| in the
0

sense of the matrix norms ||-||2and || - ||F is guaranteed. Comparison with (11) reveals
c3=us, (21)
r4=vi, (22)

(4n)xn

Singular value decomposition is equally applicable for “stacked” Ho | which combines different HT estimates from various translational motions expressed
in the same projective base. In practice, the calibration procedure is as follows:
1. 1. Take n image pairs during arbitrary translations of the
camera system and the scene.

2. 2. Calculate a projective reconstruction of the translating
points in one and the same projective base for consec-
utive image pairs.



3. Estimate n projective displacements H®and calcu-

T
4nxn

( )
late H®  (16).

0

(4nxn)

4. Calculate the SVD of H® (19)
(4nxn)
5. Approximate Ho by (20) Figure 5: For an put-on-table task, a point-to-point translation is depicted for a center point close and far from the contact point,

6. Extract the common plane at infinity (22) and the di- ) ) ) ) )
and for the wrist-center-point. Appropriate trajectory generation

rection of each translation (21). allows to avoid collision with the table or to decouple the control law.

4.2 Point-to-point translation
We are now interested in computing a projective translation
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HT that maps a point Mo to a point M1;
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M1 = yHT Mo (23)

Translation imposes parallelism on all point traces. This is
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will come in. Solving for ¢3 with (12) yields
<_<_H - Mo
c3=(24)

ra ! Mo
The choice of y has to guarantee (14), so

:4_<_o
<”
.
r4 M1

and HT as a function of Mo, M1,and ra becomes

T T
M1rg4  Morg

4
r4 Mo

Ammv M

11111111111111111111111111111111111111111111111111111111111111111111111

Figure 6: RT-Decomposition depending on the chosen center of rotation.



HT=1+ - (26)
_Sﬂ_/\_:sq_/\_p Eq_/\_o

Now, considering the calculated projective translation as a M1 = HRT Mo. The corresponding projective translarobotic task, the whole object is moved rigidly in
the scene tion HT is determined following section 4.2. The resid-

-1

e
and contact, collision, or occlusion could be checked (Fig. ual displacement H = HRT HT is clearly the pro5). jective representation of a pure rotation HR. To
obtain
-1
. .. e 4.3 R-T Decomposition o -1
a rotation-first task, decomposition is H = HT HRT and H =HRTHT fora
rotation-last task. The condi-We will show how to decompose a projective displace-tion M1 =

° . . . . . .
H Mz obviously holds, so the axis of rotation ment with respect to a central point, which

moreover con-passes through Mz. strains the rotation axis to pass through it. One could think of
A A A . A In summary, affine calibration by determining the plane
generating rotation-first, rotation-last trajectories and a

) at infinity permits calculating a projective transform which ] o ) rigidly moves a given point to a destination by a
Cartesian-move mode. An arbitrary projective displacement HRT is expressed

transla tional displacement. It furthermore enables to decompose a general displacement into a translation HT

as a sequence of one projective rotation Hr and one pro- jective translation HT (Fig. 6):
and rotation HR, whose axis is constrained to pass through the distin-H_=H_H_(27) guished point. This is of particular importance in robotics,
as constraining the rotation to be around a point of the For a given center-point Mo — this might
be an ideal point robots’ kinematics, e.g. the robot-wrist’s center point, al-or an observed point — the destination M2 is calculated by lows to decouple the
control-law.

5 The task of translation

We are now considering a robotic task that consists of a uniform translational displacement of an object. Given the reconstruction of a point of reference Qin
its initial position Q(0), and in its target position Q(1), the corresponding projective translation HT is determined by (26) and fully defines the task. The
direction becomes M@ = c3, according to (24). Distance and orientation are implied by the target point Q(1). If translation is to be defined by its direction
only, taking an arbitrary via-point as Q(1) suffices and extrapolation yields the motion beyond this point. Noteworthy, € is an unoriented direction only,
while orientation is defined by the order of Q(0) and Q(1). In addition, the reference point is not required to lie on the object itself, i.e. any pair of points
defines a translational task.

5.1 Singleton set-point definition

Consider kpoints Mion the object and their initial positions Mi(0) in the reconstruction. Compose the configuration matrix S(-)
S(0) = M1(0) M2(0) ---Mk(0) (28)

which represents pose and shape of the object. Apply HT to obtain the set-point configuration mgﬁv = HT S(0). Since HT preserves rigidity, wsE is, up to
occlusion, an admissible configuration, i.e. corresponds to the image of the rigid object in the respective pose. The image configuration sand the image



set-points s follow by simple backprojection
s(0) = PS(0),s “(1) = PS“(1), (29)

where Pis the projection matrix (3), that is available for each observing camera from the reconstruction step.

So far, this corresponds to the usual task definition by “point-point-incidence”, present in known approaches to visual servoing [3]. Neither trajectory, nor
direction of approaching are defined. Unlike existing approaches, the definition of the task by the projective translation HT allows for the generation of
multi-point set-points for an arbitrary rigid object. At the same time, the translation task HT can be calculated from any observed translation vector.

5.2 Complete-path task-function

The definition of the task given by the projective translation HT now is extended to a continuous-path, uniform, straight-line translation. This completely
constrains the trajectory and additionally the direction of approach. Having
(20) in mind, the amm:J__o: [10] of our continuous taskfunction HT (t) becomes

1000

|

o100

HT ()= yST ®s7 1€ [0,1]. (30)

|

loo1t
0001

7 Please note that uniformity is with respect to spacial Euclidean distance, i.e. HT (t) corresponds to a
t-fractile of the task’s total distance. The formulation in (30) equally applies for moving backwards
t<0, towards the set-point 0 <t<1, and beyond the set-point t>1. In contrast to simple interpolation of
image set-points, rigidity is guaranteed at any t.

5.3 Uniform set-point interpolation

Thanks to the parameterization in (13), the calculation of HT (t) becomes a weighted linear interpolation between initial and final configuration HT (0) and HT (1)
with the scale ratio y

HT (t)= y(I+ tHo)= y(I+ tHT /y—tl), = y(1 —t) I+ tHT. (31)

Unless y is respected, HT (t) is neither uniform, nor “rigid”. The same holds for the interpolation of s’and
S.

s ()= y(1 -s°(0) +ts°(1), (32) s ()= y(L -t)s *(0) +ts °(1), (33)



. . ° . . ° . . . - .
The singleton set-points S and s’ become a set-point function S (t) and m»@. the latter in homogeneous image coordinates. The trace of ms@ coincides with the
image lines connecting initial and target image points. The trajectory of mge_ a dynamically varying set of kimage points, is however the projection of a uniform,

rigid translation. This implies that at any tthe current set-point mwe corresponds to an admissible pose of the object, which lies on the shortest path to the target.
Moreover, the parameter t corresponds to relative Euclidean distance along the path. Purely image-based interpolation, in contrast, deforms the object and fails to
reflect spatial distance.

5.4 Velocity profiles

The dynamic formulation now allows to impose any velocity profile on the trajectory. Direct application of m$3” t¢ [0,1] yields constant velocity translation

parallel to the z-axis. Composing m»@ with the integral function of a desired “velocity profile” v(u) generates a set-point function of variable gain. Figure 7, for

instance, depicts an initial acceleration until saturation, followed by a phase of constant velocity, and a final deceleration until complete set-point overlap S (1).
More formally, let v(u): u¢ [0,1] be the desired velocity profile. The resulting time-dilating function xis defined as

Q.
X(t)= 1/ ¢ v(u)du,with @s.t. x(1) = 1. (34)
0

Infact, this procedure corresponds to enrolling the velocity profile by integration, resulting in a one-dimensional trajectory over time, which is finally projected
onto the direction of translation.

deceleration
x(t)

linear

constant velocity

1

acceleration:

linear

Figure 7: Three-phase velocity profile v(u) and the time-dilation x(t).



6 Discussion and Conclusions

In this framework we propose generating task-functions that correspond to complete-path trajectories solely and immediately from the visual information of
the scence, without knowledge of the calibration parameters. In classic approaches to task planning, completely known Euclidean structure of the work-space
is assumed. Therefore, planning and generation of trajectories are moreless equivalent. In particular, no additional difficulty arises from trajectory generation
and from their transfer to the sensor-space.

Unlike these approaches, the presented framework does without Euclidean scene structure, and does without a calibrated sensor. Hence, care has to be
taken that the constraints resulting from observing a Euclidean world by a perspective visual sensor are respected by the generated task-functions, or more
figuratively, that a link between sensor-space and work-space is kept, that reflects as far as possible the implicit relations between both, as their explicit
relationship is not accessible in an uncalibrated environment.

6.1 A generated task

We distinguish generating a task-function from planning a task in the sense that no combinatoric search takes place, that no decisions are made. Generating a
visual taskfunction corresponds rather to transforming image information, such that the obtained task-function is a visual instantiation of a generic task, with
the current visual configuration of the scene as input parameters (see Fig. 8). The specification of the above mentioned generic tasks is however thought to be
in terms of rigid motions of the object, articulated motions of the actuator, or Euclidean geometry of the scene. Thus, at any time the relationship between the
visual configuration of features and the geometric and kinematic configuration of tool and actuator have to be identified to the largest extend possible in an
uncalibrated setup.

Apart from explicit task planning, the decomposition of observed displacements and composition from observed displacements is included as “construction
phase” in the framework of visual trajectory generation. They sometimes require further knowledge about the scene structure. In this 8 report, we have given
some consequences and examples of determining the affine properties of the scene. However, the explicit step of affine reconstruction is avoided.




Figure 8: The instantiation of a generic grasping task. Starting from the object to be grasped, the gripper position can be transfered as shown in [5]. Subsequently, a pure
translation of twice the claw’s edge is instantiated, which avoids an object collision during approaching. Finally, the present position of the gripper is taken and a rotation-first
trajectory to reach the initial position of approach is generated.

6.2 A plane at infinity

The affine properties of the scene have been proven to be of particular use in the construction and decomposition of projective displacements, the “uncalibrated”
representation of rigid spatial motion. The identification of the plane at infinity introduces the concepts of parallelism and oriented directions. They allow to
generate the projective translation between an ordered pair of points, and consequently to decompose a general projective displacement into a translation and a
rotation around a given center-point. An efficient algebraic method of motion-based affine auto-calibration was given, which nicely fits in the considered
system-setup,
i.e. controlled robot motions observed by a weakly calibrated stereo-rig.

A further affine property are length ratios. They allow not just for the rigid interpolation of projective motion. Above that, uniformity of the corresponding
trajectories in the sense of Euclidean configuration is achieved.

6.3 A complete path

It was demonstrated how to inter-and extrapolate projective motion to generate the complete-path of a rigid motion. Here, the cmﬁ:Noo:m_mm primarily of the traces
of rigidly moving points. The interpolation of the path is of particular interest since potential local minima in usually point-to-point-wise defined functions of the
image error are bridged. An additional contribution to globally convergent control

“The ISO defines “path” as “...spatial locus drawn by the movement of any point on the robot or the workpiece,along which orientation of the end-effector may or may not be variable.”
is that the path corresponds to motions with monotonically decreasing error in configuration. In conclusion, we consider a complete-path as a step towards
globally convergent control.

6.4 A uniform trajectory

The difference between a trajectory and a path is that the trajectory describes the progression of motion over time and the object’s configuration at a time instant,
whereas the path describes the swept trace of motion, only. Thus, the proposed interpolation of projective motion ensures that the reprojected, now dynamically
varying set-points correspond at any time to an admissible configuration of the object, i.e. to a rigidly moving object in varying poses. Thus rigidity is preserved,
trajectories are physically valid.

Over and above that, the interpolation parameter t establishes an implicit relation between visual and Euclidean configuration, and the corresponding error
functions. In other words, the visual set-points at t correspond to the tfractile of distance in Euclidean configuration. One can also view this relationship as an
implicit calibration of and only of the currently instantiated visual task with respect to (relativ) error in configuration.

We consider the established relationship between visual and Euclidean configuration as a step towards weaker requirements on hand-eye and kinematic
actuator calibration [7], [8]. Furthermore, there is now an apparent connection between the gain in visual configuration and the gain in object configuration, which
allows for optimizing with respect to dynamic properties, e.g. maximal acceleration, speed limits of the actuator [9].
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