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Abstract

The problem of finding the collineation between two 3-D projective reconstruc-
tions has been proved to be useful for a variety of tasks such as calibration of a stereo
rig and 3-D affine and/or Euclidean reconstruction. Moreover such a collineation may
well be viewed as a point transfer method between two image pairs with applications
to visually guided robot control. In spite of this potential, methods for properly
estimating such a projective transformation have received little attention in the past.
In this paper we describe linear, non-linear and robust methods for estimating this
transformation. We test the numerical stability of these methods with respect to
image noise, to the number of matched points, and as a function of the number of
outliers. Finally, we devise a specialized technique for the case where 3-D Euclidean

coordinates are provided for a number of control points.



1 Introduction and motivation

Until very recently it was believed that visual tasks require some form of off-line camera
calibration. For example, a moving calibrated camera provides a sequence of images from
which 3-D Euclidean structure can in principle be recovered. More recently, it has been
shown both theoretically and experimentally that an image sequence taken with an un-
calibrated camera can provide 3-D Euclidean structure as well [11]. The basic paradigm
may well be viewed as a form of self- or on-line calibration and it consists of recovering
projective structure first and then upgrading it to affine structure and then to Euclidean
structure.

Another possibility that has been recently investigated by a number of researchers is to
consider a sequence of image pairs gathered with a moving uncalibrated stereo rig [1, 17, 2,
7]. With such an uncalibrated image pair, matched points are reconstructed in projective
space [6]. If the stereo pair undergoes rigid motion, the two projective reconstructions
(before and after the motion) are related by a 3-D projective transformation which is
conveniently represented by a 4x4 regular matrix — a collineation. Therefore methods
that attempt to recover projective, affine or Euclidean structure from a moving stereo pair
need to estimate this collineation. Interesting enough, with the exception of [1] which
briefly outlines a method for estimating this projective transformation, it appears to be no
published paper in the computer vision literature describing and evaluating methods for
estimating this collineation from stereoscopic data.

In this paper we address the problem of estimating such a collineation from two projec-
tive reconstructions obtained from two different image pairs. More precisely, we attempt
to estimate the 3-D projective transformation allowing, in some optimal sense, to overlap
one projective reconstruction onto the other. Therefore, the design of an optimal criterion
as well as the choice of a technique to minimize this criterion are crucial. Since projec-
tive entities are defined only up to a scale factor, one cannot define a metric criterion in
projective space.

The first method that we describe below “throws” out the scale factors and transforms
the 4x4 matrix H representing the projective transformation into a 16-vector h. The

solution is the null space of a measurement matrix B, i.e., Bh = 0.



The second method that we describe below attempts to estimate the scale factors
rather than throwing them out. This formulation leads, as in the previous case, to a linear
formulation. The solution vector s is found by solving the linear problem Cs = r.

When the 3-D points are projected onto images, their 2-D positions can be measured in
pixel coordinates. Even if the internal camera parameters are not known, it is possible to
define the Euclidean distance between two image points and built an error criterion based
on the sum of squares of these distances. The estimation of 3-D projective transformations
from such image measurements resembles bundle adjustment techniques widely used both
in photogrammetry and computer vision for camera calibration. The advantage of these
methods over the linear estimators mentioned above is a better behavior in the presence of
badly conditioned data. Unfortunately such an estimator leads to non-linear minimization
techniques and some form of initialization must be provided.

To summarize, neither of the above methods are entirely satisfactory. In order to
overcome these drawbacks, a robust estimator is necessary. We describe such a robust
estimator which makes use of either one of the two linear methods in its inner loop and
which provides an initial guess to the non-linear estimator.

Next, we study the behavior of the linear and non-linear estimators in the presence
of image noise and as a function of the number of matched points. We also study the
behavior of the robust estimator in the presence of outliers. In the light of these experiments
it appears that the non-linear method performs slightly better than the linear methods.
However for levels of noise below one pixel in magnitude, the linear methods performs as
well as the non-linear ones and hence they should be preferred because they are less time
consuming than the non-linear methods.

Finally, we devise a specialized technique in the case where 3-D Euclidean coordinates

are provided for a number of control points.

2 Linear and non linear estimation of 3-D collineations

Given a pair of images denoted by x and the fundamental matrix F, that describes the
epipolar geometry associated with the two cameras, there exists a projective basis of the

projective space P? such that the projections from this space onto the images are repre-



sented by' two 3x4 matrices [4, 12]:

P,c:(l3 03) and P;:(G; 6;) (1)

were G/, is a 3x3 regular matrix and the 3-vector el is called the epipole and is the
projection onto the second image of the optical center associated with the first camera.

Let x, ' be the images of a 3-dimensional point M, then from the projection equations
pzx = P, X, and pl ' = P, X results the projective coordinates X of point M in the
projective basis B, defined by (P,,P’) [12]. Notice that the above projective equalities
are defined up to unknown scale factors p, and p..

Consider a second pair of images y of the same scene but taken from a different viewpoint
and denote with F, the corresponding fundamental matrix. The new projective matrices
are

Pyz(I3 03> and P:IU:(G; e')

Y

and if y, 4y’ are the new projections of the point M, its 3-D projective coordinates in the
basis B, are denoted by Y which verify p,y = P,Y and p,y' = P,Y.

Assume now, that we have a set of m points, and let X, X5, ..., X,, and Y, Y,
..., Y, be their homogeneous representations in the projective basis B, respectively B,.

Then, there exists a 4 x 4 collineation matrix H that maps the points X; to the points Y ;:
wY; =HX; (2)

with p; arbitrary non-null scalars.

H, defined up to a scale factor, has 15 degrees of freedom so to determine it, we need
at least five point correspondences since each pair (X;,Y;) gives us 3 constraints after
eliminating p;.

Indeed, five points in the projective space generally define a projective basis of P? such
that the collineation between the standard projective basis and the set of points { X;}i—1 5

is given by the matrix:

T1:<M1X1 e Xo 13 X3 ,M4X4)

'We denote by I,, the n x n matrix of identity and by 0,, the n-vector containing n zeros.



where (p1, o, 3, ta) ' = (X1, X, X3, X4) ' X5. The collineation T, which maps the
standard reference points to the second set of points {Y;};—1.5 can be obtained similarly.

Finally, the collineation between {X;};,—1 5 and {Y;};=1 5 is then:
H=T,T"

This method is straightforward, but unstable in the presence of noise since we only
use the minimum number of points to compute the collineation matrix H. If we have
m > b pairs of points, it is better to use all of them and estimate H by some minimization

technique.

2.1 Linear method 1

The classical way to estimate the entries of H is to eliminate the scale factors u;. A

homogeneous linear system in the entries of H is thus obtained [15]:

}/;(4)‘/;(1) _ }/;(1)1/;(4) =0
}/;(4)‘/;(2) _ Y;<2)VZ~(4) =0 (3)
}/;(4)‘/;(3) i }/;(3)%(4) =0

where we used the notation V; = (Vi(l), Vi(Z), 1/;(3), I/;(4))T for the vector HX;:
Vi = HpX{D + HpX(? + Hpp X" + Hju X[ (4)

In the affine or Euclidean cases we have Yi(4) = 1 which is often at a different magnitude
than Yi(l), Yi@), Y;.(?’). This explains the choice of these three equations where Yi(4) has the
same role. In the projective case, we cannot say the same thing, so if we want that all four
coordinates play the same role, we can add the three other possible equations (which are

not independent from the previous ones):
Y;(Z)V;(l) _ Yi(l)Vi(z) -0
Y-i(?»)vi(l) _ Y;(I)VZ-(?’) -0 (5)
Yi(3)Vi(2) _ Yz‘<2)Vi(3) -0

This system can be solved when m > 5 point correspondences are available and with

an additional constraint such as ) Hfj =1.



If we denote h = (Hyy, Hia,...,Hy) ', the equations (3) and (5) can be written in the

form?:
Bi h = O,
where B; is a 6 X 16 matrix:
(vix]  of o yVx])
o] v¥x] o v¥x/
4 3
s_| o of YOXxT vPx]
vOxT vPx[ o] 0]
yOxI o vOx] o]

\ o YvUx] v¥x] o )
Given m correspondences (X;,Y;), we are looking for h that minimizes the following

error function:

m

>_ IBih|* = BT (Z B/ Bz-) h. (6)

i=1

With the constraint Hfj = 1 the error function to be minimized becomes:
m}in (R"Bh+ A(1 - h'h)) (7)

The 16x16 matrix B = > 1", B/ B; being symmetric semi-definite and positive, the

solution for h is the eigenvector of B corresponding to the smallest eigenvalue of B:
Bh = \h

Indeed, for m point correspondences the rank of B is equal to 15 and therefore the null
space of B is a non-null 16-vector. In practice, due to noise, the rank of B is equal to 16
and the null-space becomes the eigenvector associated with the smallest eigenvalue. Let
B = QDQT be the eigen decomposition of B with Q being an orthogonal matrix whose
columns correspond to the eigenvectors and D being a diagonal matrix. The singular
value decomposition of B is B'B = QD?Q". Therefore, in practice, the solution to the
minimization problem consists of computing the singular value decomposition of B and

taking the last column of Q.

2If we use only three equations one can remove the rows corresponding to the other equations and

obtain B; as a 3 x 16 matrix.



2.2 Linear method 2

An alternative solution is to estimate simultaneously the entries of H and the scale factors
Ui, - - - - Equation (2) can be decomposed into four distinct linear constraints and, for

example, the first of these linear constraints can be written as:
HHXZ-(I) + H12X2~(2) + H13Xi(3) + H14XZ-(4) — /.LzY;(l) =0

Without loss of generality one scale factor is set to 1: pu, = 1. Therefore, we have
16 unknowns for the entries of H and m — 1 unknown scale factors. The 4 constraints
available with each one of the m equations (2) can be written as a linear system Cs = r

with 8 = (Hu1, ..., Hua, i1, - s 1), 7 = (0,...,0, .57, V2 v ¥ v T, and:
——

4x(m—1)
(B, -Y, o .. o0, )
E, 0, -Y, .. 0
C=
E,1 0 0, ... Y,
\Ex 0. 0, ... 0,

The 4x16 matrices E; are defined by:
X/ o] o/ o
o] X, o] o]
o] o] X/ o
o o] o X/
This linear system consists of 4m equations. Since there are 16 + (m — 1) = 15 +m
unknowns, we must have m >5. The linear system can be solved using the standard
pseudo-inverse technique:
s=(C'C)"'C'r

provided that the 3-D points are not coplanar.

2.3 Non-linear method

One way to assess the quality of the estimated collineation H is to compare the projections

of ]71 = I/-\IXZ- and of 5(\1 = I/-\I_lYZ- with the true image points. Let a; and ] be the true
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image points (in the left and right images) from which the 3-D point X ; was reconstructed,
and let P, and P/, be the corresponding projection matrices (see (1)) The projections of
X, by P, and P/, are noted by Z; and Z;. Similarly we define y,, y’, P, and P}, y; and
Ui

# = PH'Y,
@ = PLHY,
y;, = P,HX,
9, = P HX,

With the notation y' = (g' 1), let d(7,y) denote the Euclidean distance between the
image points y and y. The quality of the collineation is assessed by the following quadratic
error function:
m
FEA) = 3 (d@, 5 + @, T +d(@,5)° + 4@, 5)°) Q
i=1
Direct minimization of this error function over the entries of H results in a highly non-
linear objective function because one has to express the entries of H ™! as a function of the

entries of H. Alternatively one can minimize the following objective function:

min (f(H, H) +»||HH' - L|") (9)

where the term |[HH' — I,||* is known as a penalty function. High numerical values for 7
enforce this constraint and hence guarantees that H' = H L.

Therefore, the minimization process considers H and H' as two independent sets of
variables.

An alternative method is to use a less symmetric objective function and to minimize
only the distances between i,@ and the true image measurements y,;, y; in the second

pair of images. In this case we need no additional penalty term and the objective function

becomes:
: 1
min H(H) = min o— 2_1: T (10)
with the following residual:
ri = d(7, 9,)" + d@;’ai’)Z (11)



3 Experimental comparison using simulated data

We implemented the methods described above to estimate H. Prior to the estimation of H
projective reconstruction must be performed such that the coordinates of X; are estimated
from the image points @; and «; and the coordinates of Y'; are estimated from the image
points y, and y.. This is done using the triangulation method described by Hartley and
Sturm [5]. The latter minimizes reconstruction errors by constraining the left-image and
right-image points to lie on conjugated epipolar lines. Certainly, this method reduces the
effect of image noise and biases the comparison described below. Nevertheless, the overall
goal is to obtain the best available results and triangulation is beneficial with respect to
such a goal.

We carried out a large number of experiments in order to compare the quality of the
results. The algorithms have been tested with a set of 41 points.

The first experiment uses all the points and analyses the sensitivity with respect to
image noise. Gaussian noise with varying standard deviation (from 0 to 2 pixels) is added
to the image point locations. The second experiment analyses the sensitivity as a function
of the total number of points being used by the minimization processes, the minimum
number of points being necessarily equal to 5.

With all the minimization methods and in both experiments, the same error function,
i.e., eq. (8) was used to assess the quality of the results.

Figure 1 shows the results of the first experiment and displays the median error over
100 trials of each algorithm and with various levels of noise. The following notations are

used:

L1 - linear method 1;
L2 - linear method 2;
N1 - non-linear method, minimizing the back-projections in the two image pairs, and

N2 - non-linear method, minimizing the back-projections in the second image pair.

Note that the quality of the collineation linearly degrades with increasing image noise.
The non-linear methods (N1 and N2) slightly outperform the linear methods which, in

turn, have an identical behavior.
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Backprojected errors
7 T T T T T

median error over 100 trials

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
noise level
Figure 1: Comparison of two linear methods and two non-linear methods for computing

the projective collineation in the presence of image Gaussian noise.

Figure 2 shows the results of the second experiment where three levels of noise were
used in conjunction with the non-linear method N2. This experiment reveals that in the

presence of noise 15 points at least are necessary to properly estimate the transformation.

4 Robust estimation of 3-D collineations

A common source of errors in computer vision is image-to-image point matching. State-of-
the-art algorithms consist of using robust estimators to determine the epipolar geometry
[16]. Such an algorithm finds point matches that are geometrically correct, i.e., they lie on
conjugated epipolar lines [9], but they may be physically incorrect: the point is correctly
reconstructed from a mathematical point of view but it does not correspond to an actual

feature.
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Backprojecated emors
T T T T T T T
noise level 0.1 ——
noise level 3.5 -+-
noise level 1 ‘8-

10 —

B
0

FAANYTRATT AR TR

median error over 100 trials
[+
T
1

sl = 2] 4
1E T T e - i
g I + 1 14 ! ——

& 10 18 20 25 30 38 40 48

number of points used to eompute H

Figure 2: The sensitivity of the non-linear method N2 as a function of the number of points

and for three levels of Gaussian noise with standard deviations 0.1, 0.5, and 1.

If two image pairs are considered, as it is the case in this paper, mismatches can result
even from correctly matched points based on the epipolar geometry associated with each
one of the two image pairs. Such a mismatch will give a large error and the minimization
methods described in the previous section cannot deal with such mismatches.

This problem is illustrated on Figure 3. Let @, ', y, and y' be a quadruple of matched
points in between the two image pairs. Among these points, ' is a bad match because
it results from the projection of 3-D point N. Nevertheless, £ and ' correctly satisfy
the epipolar constraint because N lies in the same epipolar plane as M. The projective
coordinates of M, when reconstructed from y and y' are denoted by the 4-vector Y. This
point projects onto the first image pair in & and «”. The error between &’ and " is large
and will have a dramatic effect onto the non-linear minimization process described in the
previous section. Similarly, the linear methods will be affected as well because the 3-D

point M is wrongly matched with the 3-D point Q).
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large error
between x’ and x”’

Figure 3: Quadruples of mismatched image points can result even if the image points
satisfy the epipolar geometry between the two image pairs. Points marked with a black
dot are real points while points marked with a grey dot are virtual points predicted by

geometrical computations.

Commonly used robust methods include M-estimators, least-median-squares (LMedS),
and random sample consensus [3]. We immediately ruled out M-estimators because in our
case this method can tolerate only up to 7% of outliers. The advantage of RANSAC over
LMedS resides in the outlier rejection strategy. RANSAC requires a user-defined threshold

while LMedS does not. Such a threshold is useful in practice for a number of reasons:
1. efficiency in the presence of non homogeneous noise;
2. 50% outliers and above are allowed, and

3. increased time-efficiency because the inner loop of the algorithm can be quit as soon

as a satisfactory solution is found.
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When applied to the problem of estimating a 3-D projective transformation, the robust

method that we implemented can be summarized as follows:
1. Among the set of m matches consider N samples of 5 matches;
2. For each sample k£, 1 <k < N:

2.1 Estimate a homography Hj from these 5 matches;

2.2 Compute the total number of matches m; consistent with Hy, i.e., matches

whose associated error is below a threshold, the error being defined by eq. (11);

3. Select the homography H; which is associated with the largest number of consistent

matches;

4. Use all of these my to refine the estimation of the best available homography Hy,

and
5. Use the latter estimation to update the list of inliers and outliers.

In order to determine the number of samples N we must set the probability of selecting

a good solution. The formula for this probability is:
y=1-[1-(1- 50ut)p]N

where p is the number of points in the sample (p = 5 for 3-D collineations) and &,,; is the
percentage of outliers that are to be found in the initial data.

For example, for v = 0.95 and €,,; = 0.5 we obtain N = 100. Hence, the inner loop
of the robust estimator algorithm has to be run at least 100 times. The inner loop main
step (2.2) consists essentially in estimating a collineation H from 5 point matches. With
5 matches the solution is found in closed-form using either one of the two linear methods

described above.

4.1 Experimenting with the robust estimator

In order to assess the performance of the robust estimator described above, we tested it in

the presence of simulated data. For this purpose we used two sets of points : one set of
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Figure 4: This curve shows the back projected image error as a function of the number
of outliers. With 50% outliers and less, the back projected error is almost constant and

slightly higher than the initial image noise.

200 points and another set of 200 points. The first set was perturbed with Gaussian noise
with standard deviation equal to 0.5 pixels. The second set was perturbed with white noise
whose amplitude varies between 3 pixels and 20 pixels.

Furthermore, the algorithm’s parameters were set for an expected number of outliers
of 50% but the number of outliers varied between 0 and 75%. Figure 4 shows the result
of running the algorithm. The average back projected error per image point (the error
measure is the one given by eq. (8)) is shown as a function of the number of outliers

present in the data.
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5 Dealing with Euclidean control points

Given a projective reconstruction of a set of 3-D points, an important task is to upgrade
it to Euclidean structure. In this case one may define the collineation H, which maps
or upgrades projective structure to metric structure. A number of authors studied the
structure of H, under various camera motions such as general motion of a stereo rig [7],
rotations of a single camera [4], etc. Here we take a different approach and assume that
the Cartesian coordinates of a set of landmark points or control points are provided. A
similar approach was taken by Mohr, Boufama, and Brand [10] but they were unable to
express the solution in close form.

It is assumed that the Euclidean coordinates Y; = (Yi(l), Y;m, Y;(?'))T of at least 5 points
in general position are known in some Euclidean basis Bg. Let as before X; be the 3-D
projective coordinates of point indexed by i. Since Euclidean space is a sub-space of the
projective space, one can compute the collineation H, that maps X, onto Y; = (?ZT nH’
(the homogeneous coordinates associated with Y;) using any of the linear or non-linear
techniques described in the previous sections. Here, however, we would like to take full
advantage of the known Euclidean structure associated with the control points.

Consider the 4-D vector space corresponding to the projective sub-space generated by
the Euclidean basis By [14]. In this sub-space the hyper-plane X*) = 1 corresponds to the
3-D Euclidean space. One way to estimate H, is to minimize the sum of squares of the

Euclidean distances between the 3-vectors Y; and V; with:

-
V. — (H, X)) (H,X;,)® H,X,)®
! (H,X,;,)®’ (H,X,;,)®’ (H,X;®

Hence, the error function to be minimized is:

min g2 (12)
i=1

with:

3

2 2 2
oo (EX)Y a) (EX)O ) (LX)
(H,X;)® (H,X;)® (H,X,)®

which is a non-linear function in the entries of H,. To minimize this function, non-linear

optimization methods are necessary.
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Figure 5: The Fuclidean distance between vectors Y; and H, X; in 4-D vector space can

be approximated by d;.

Alternatively, it is possible to define a metric in the 4-D vector space associated with the
Euclidean space when the latter is a sub-space of the projective space. One way to define
an Euclidean distance between Y; (a control point) and H, X; (a transformed projective
point) is to arbitrarily fix the scale factor associated with the homogeneous vector H, X;
and to compute the distance d; between this vector and its projection onto the direction
of Y; (see Figure 5).

The projection of H, X; onto Y; is given by their dot-product normalized by the length
of Y;:

(Y H.X)’

P YTy,

The distance between the tip of H, X; and the tip of its projection is equal to:

Y,/ H,X;)?
;= (H,X,) (H,X;) - & H X"
e
1
= X/H I,HX, - (Ti) X/HY, Y HX;
Y.Y,]
- XZTHI(L— el )HuXi
A
= X/H AHX;

Notice that matrix A; just defined is a symmetric semi-definite positive matrix and its
eigenvalues are equal to (1,1,1,0). With the notations already used in sections 2.1 and 2.2

we have:
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X,/ o] o/ o]
o, X' o] o/
H, X; = ! ’ ! ! = Ezh
o, 0] X/ o]
o] o/ o X/
The distance d; becomes:

d?=X/H AH,X; = h"E] AEh

By summation over all control points we obtain the following error function:

Y di=h"> (E/AE;) h=hTAh (13)
Where A = )", (EZTA,E,) is symmetric semi-definite and positive. The optimization
problem is therefore identical to the one expressed by eq. (7) and the solution for h is the

eigenvector associated with the smallest eigenvalue of A.

Figure 6: A pair of real images (left) and the Euclidean reconstruction of the scene (right).

In order to illustrate this method consider the pair of images of Figure 6. 3-D Eu-
clidean coordinates of 26 data points are also provided with these images. Point corre-

spondences were obtained interactively, and the fundamental matrix was estimated using

18



the method described in [16]. 3-D projective coordinates are obtained by triangulation [5].
The collineation between projective and FEuclidean coordinates was estimated using the
method described above and then used to upgrade the entire set of projective coordinates.

This resulted in an Euclidean map of some of the roofs which are displayed on Figure 6.

6 Conclusion

In this paper we described various methods to estimate the collineation between two pro-
jective reconstructions. We described two linear methods which minimize an algebraic
distance in 3-D projective space, two non-linear methods which minimize a metric distance
in 2-D image space, and a robust method which combines any of the linear methods with
an outlier rejection strategy. Moreover, for the special case where Euclidean coordinates of
a few control points are available, we devised a linear method based on a metric distance
in the 4-D vector space associated with homogeneous coordinates.

In order to evaluate these methods and assess their respective merits, we carried out
a large number of experiments with both synthetic and real data. The synthetic data
allowed us to add Gaussian noise to image data and to study the numerical stability of
the various implemented methods. In the light of these experiments it appears that all the
methods have an almost identical behavior and that the non-linear methods outperform
the linear ones. However for levels of noise below one pixel in magnitude it is not possible
to distinguish between the performances of the four methods. Another set of experiments
allowed us to test the performance as a function of the number of points being considered.
The conclusion of this set of experiments is, not surprisingly, that (i) the more point
matches are available the better it is and (ii) below 15 to 20 point matches one should
expect unreliable results.

For the special case where projective coordinates of a few control points are matched
against Euclidean coordinates, we have been able to devise a linear method which is based
on a metric distance in 4-D space — the vector space associated with homogeneous coordi-
nates of the 3-D projective space and its Euclidean sub-space. Such a linear error function
could probably be extended to other estimation problems such camera calibration and

bundle adjustment.
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One interesting application associated with the computation of such a 3-D projective
transformation is the transfer of 2-D points from one stereo image pair to another stereo
image pair. This transfer technique is useful whenever a set of 3-D points is observed with
one stereo pair and one wants to display the same 3-D set as it would be observed by
another stereo pair. This stereo transfer technique has been applied to a visual grasping
method developed elsewhere [8]. Another application associated with the computation of
a 3-D collineation is the self-calibration of a stereo camera pair [7], [13].

Another promising outcome of this work that we plan to investigate is the use of
projective motion estimation to perfrom motion segmentation. Indeed, in this paper we
considered a moving stereo sensor observing a rigid scene. If the scene is not rigid, the
scene points undergoing some motion will be detected as outliers. The outliers can be
further analyzed in order to detect possible moving objects. It will therefore be possible

to distinguish between ego-motion and moving scene objects.
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