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Given a sequence of image pairs we describe a method
that segments the observed scene into static and moving
objects while it rejects badly matched points. We show
that, using a moving stereo rig, the detection of motion
can be solved in a projective framework and therefore
requires no camera calibration. Moreover the method
allows for articulated objects.

First we establish the projective framework enabling
us to characterize rigid motion in projective space. This
characterization is used in conjunction with a robust es-
timation technique to determine egomotion. Second we
describe a method based on data classification which fur-
ther considers the non-static scene points and groups
them into several moving objects. Third we introduce
a stereo-tracking algorithm that provides the point-to-
point correspondences needed by the algorithms. Fi-
nally we show some experiments involving a moving
stereo head observing both static and moving objects.

1. INTRODUCTION

The problems of detection, description, and understand-
ing of motion from visual data are among the most diffi-
cult and challenging problems in computer vision. At the
low-level, 3-D motion must be analysed based on the 2-D
appearance and time evolution features that are observ-
able in images. At the high-level, the 2-D motion fields
previously derived must be interpreted in terms of rigid,
articulated, or deformable objects, discriminate between
objects undergoing distinct motions, estimate the motion
parameters, etc.

If the visual sensor moves as well, one more difficulty is
added because one has to estimate egomotion (the motion
of the visual sensor with respect to some static reference

frame) in the same time as motion associated with the
observed objects.

Existing techniques for motion/egomotion discrimina-
tion and motion segmentation roughly fall into two cat-
egories: methods using an image sequence and methods
using the stereo-motion paradigm:

o Image sequence analysis. These methods rely either
on the estimation of the optical flow or on point-to-point
correspondences. In the former case the relationship be-
tween 3-D motion of a rigid body and the observed 2-
D velocities is explored. In the latter case, such con-
straints as the epipolar geometry and the trifocal tensor
are used. Points satisfying the same type of constraint are
assumed to belong to the same rigid object. Therefore,
the problem of motion segmentation becomes the problem
of grouping together points satisfying the same constraint
[17,13,9, 19, 15]. For example, in [13] this grouping is car-
ried out by a clustering algorithm which uses a posteriori
likelihood maximization. Other approaches use such tech-
niques as the Hough transform [17] or robust estimators
which are used incrementally [19)].

e Stereo-motion analysis. These methods combine the
relationship between 3-D motion and image velocities de-
scribed above with stereo constraints such as the epipolar
constraint in order to disambiguate the inherent ambiguity
associated with optical flow [22, 23, 21, 11].

In this paper we address both the problem of egomo-
tion/motion discrimination and the problem of motion seg-
mentation. The approach is based on the stereo-motion
paradigm. The visual sensor consists of a pair of cameras
rigidly attached to each other — a stereo rig. The geome-
try of this sensor remains rigid over time. This allows one
to represent the motion of the sensor (egomotion) with
a 3-D projective transformation which is conjugated to a
3-D rigid transformation. Because of this relationship be-
tween projective and rigid transformations, metric calibra-
tion of the stereo rig becomes an irrelevant issue [7]. 3-D
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by 4x4 homogeneous full rank matrices, or homographies.
The estimation of such a homography is based on the fact
that a moving rig observes a static scene. When both the
rig is moving and the scene is not rigid (is composed of
both static and moving objects), current homography es-
timation methods cannot be applied anymore [1].
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Therefore, the main contribution of this paper is a
method for estimating 3-D projective transformations as-
sociated with the sensor’s motion when the observed scene
is composed of both static and moving objects. The out-
put of this resolution technique consists in the estimation
of a homography associated with egomotion as well as the
classification of the observed 2-D point correspondences
into a set of inliers and a set of outliers. The inliers are
compatible with the observed egomotion while the out-
liers are not. Therefore, the latter are farther examined
by a hierarchical clustering algorithm which operated in
the image plane and over a long sequence of image pairs.

Organization

The remainder of this paper is organized as follows. The
projective motion is defined in Section 2. In Section 3
we describe a robust estimator that enables to estimate
the projective motion associated with the sensor’s egomo-
tion and the motion segmentation algorithm is described
in Section 4. The stereo tracking algorithm that provides
point-to-point correspondences through a sequence of im-
age pairs is presented in Section 5. In Section 6 we show
some experiments with real data and finally the conclu-
sions are summarized in Section 7.

2. PROJECTIVE MOTION OF A STEREO
CAMERA PAIR

Consider a 3-D point M which is observed by a stereo-
rig from two different positions — position 2 and position
y. Let (ug,v;), (ul,v,) be the image coordinates of the
projections of M when the rig is in position z and (uy, vy)
and (uy,v,) be the image coordinates of the projections
of the same point when the rig is in position y. The
associated homogeneous coordinates of these points are
z=(uzv, )7, 2" = (u), v, 1)" and y = (u, v, 1)7 and

y' = (u}, v}, 1)T, where v" denotes the transpose of v.

Throughout this paper it is assumed that the epipo-
lar geometry of the stereo rig is known. Since the stereo
rig has a fixed geometry it is possible to associate a 3-D
projective basis to the rig and when the rig moves, this
projective basis physically moves with the rig. Therefore
there is a projective basis associated with each position of
the rig. Let P and P’ the 3x4 projection matrices associ-
ated with the left and right cameras. According to what
has just been said, these matrices are fixed. The following
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y ~PY

where “~” denotes the projective equality. X and Y
are 4-vectors denoting the projective coordinates of the
physical point M in the 3-D projective basis B, associated
with position z and the 3-D projective basis B, associated
with position y.

Equation (1) can be solved using the triangulation tech-
nique introduced by Hartley and Sturm [6] and which al-
lows to estimate X and Y. The relationship between X
and Y is:

pY = HX (2)

where g is an unknown scale factor and H is a 4x4
full-rank matrix representing a projective transformation
of the 3-D projective space. This matrix is defined up to
a scale factor and therefore it has 15 degrees of freedom
associated with it. Equation (2) provides three linear con-
straints in the entries of H and therefore with five points in
general position it is possible to solve linearly for H. How-
ever, in [1] and in [7] it was pointed out that the solution
obtained with linear resolution techniques is quite noise-
sensitive and at least 15 to 20 points are required in order
to stabilize the numerical conditioning of the associated
measurement matrix.

When the stereo-rig has fixed geometry and undergoes
rigid motion, it has been shown in [2] that the projec-
tive transformation H is conjugated to a rigid transforma-
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FIG. 1. Problem: a moving stereo rig observing a static scene
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where H,, denotes the projective-to-metric upgrade. The
above equation has been thoroughly studied in [8] and in
[16]. H can be interpreted as a projective representation
of the motion undergone by the camera pair — projective
motion and may well be considered as an extension of affine
motion [12] to the 3-D projective space:

DEFINITION 2.1. Consider a camera pair with known
epipolar geometry which observes a 3-D rigid scene while it
moves. The projective transformation between two projec-
tive reconstructions of the same 3-D scene obtained before
and after the motion is called projective motion.

In theory, one can define projective motion without
making the assumption that the stereo-rig has a fixed ge-
ometry. In practice, however, such an assumption is very
useful. Indeed, the estimation of the epipolar geometry
can be incrementally improved as new image pairs provide
new left-to-right point correspondences.

3. ROBUST ESTIMATION OF PROJECTIVE
MOTION

In order to estimate projective motion one may consider
eq. (2) for m > 5 point correspondences. Therefore we
obtain 3m linear equations which can be solved to deter-
mine the entries of H. However, such a linear estimation
method has two major drawbacks: (i) the method can
deal neither with outliers (mismatched points) nor with
non-rigid scenes (scenes that contain both static and mov-
ing objects), and (ii) the method minimizes an algebraic
distance and hence it gives poor results for badly condi-
tioned data. In particular, for m = 5 the method is very
sensitive to noise [1].

To overcome these two drawbacks we introduce a new
method based on robust estimation on one side and on
minimizing an Euclidean error on the other side.

3.1. Robust methods in computer vision

Robust regression methods are widely used to solve var-
ious vision problems such as estimation of epipolar geom-
etry [18] [24], estimation of the trifocal tensor [20] and so
forth. Commonly used robust methods are M-estimators,
least-median-squares (LMedS) [14], and random sample
consensus (RANSAC) [3].

We wish to apply robust methods in order to compute
projective motion H in the presence of outliers and/or
non static scenes. Moreover, we would like to deal with
situations where only 50 percents of the points compos-
ing the scene belong to static objects. Therefore we must
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of outliers. LMedS and RANSAC are the only methods
tolerating such a rate of outliers. At first glance they are
very similar. Data subsets are selected by a random sam-
pling process. For each such subset a solution is computed
and a criterion must be estimated over the entire data set.
The solution yielding the best criterion is finally kept and
used in a non linear process to refine both the solution and
the sets of inliers/outliers. LMedS minimizes the median
of the squares of the errors while RANSAC maximizes the
number of inliers. Even if the criteria used by these two
methods are quite different, in most practical applications,
comparable results are obtained with both methods.

The main difference between LMedS and RANSAC re-
sides in the outlier rejection strategy being used. The
user must supply RANSAC with a threshold value while
LMedS does not require such a threshold. Provided that
this threshold is correctly selected, this feature enables
RANSAC (i) to be more efficient in the presence of non
homogeneous noise, (ii) to allow for 50 percents outliers
and above, and (iii) to be more efficient because it can
quit the random sampling loop as soon as a consistent so-
lution is found. More detailed comparison/description of
these algorithms can be found in [14].

In the framework of our application, the outliers may
have two interpretations: they may either belong to inde-
pendently moving objects or be “real outliers” (i.e. mis-
matched and/or mistracked points). As the stereo rig is
observing a continuous flow of images, that means that the
observed motions of independent objects may be small. In
this case, we observe that LMedS often tends to choose
an average model of all motions. As a result the set of
selected inliers often contains some points of the moving
objects and the set of outliers contains some points of the
static scene.

The RANSAC algorithm performs better than LMedS
in the framework of our application provided that the
threshold for inliers/outliers selection ¢, (in the inner loop
of RANSAC) is carefully chosen. As a consequence we
chose this algorithm for the estimation of the projective
motion H.

The choice of the threshold ¢, is crucial for the success
of RANSAC and is chosen such that t> = 6.00% where o
is the accuracy of the point location found by the stereo
tracker described in Section 5. This threshold is observed
to be often underestimated: the correct dominant projec-
tive motion is always found (contrary to what may happen
using LMedS) but some points of the static scene may not
be selected as inliers. However a completion is performed
at the end of RANSAC by using a threshold ¢, slightly
higher than ¢, (with 6.002 < ¢.*> < 9.002). Using all the
successive dominant motions in a sequence and averaging
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bust algorithm (see Section 4).

Moreover the number of random samples N must be
sufficiently large to guarantee that the probability of se-
lecting a good subset is high enough, say this probability
~v must satisfy v > 0.999. The theoretical expression of
this probability is v = 1 — (1 = (1 — £0yt)?)" where p is
the number of points that are necessary to compute a solu-
tion (p = 5 in our case) and €,y is the number of outliers
that are tolerated (€4,¢ = 0.5 in our case). By substituting
all these numerical values in the above formula we obtain
N = 220 as the minimum number of samples. However
the expression of v does not take into account the pres-
ence of noise on the inliers and a value of the order of 5
to 10 times larger than the theoretical one should be used
for N. Hence for the robust method to be effective, the
inner loop of the algorithm must be iterated at least 1000
times.

Moreover, remember that outliers have two physical
meanings: they may well correspond either to mismatches
or to moving objects. Therefore we must be able to distin-
guish between inliers and small motions. To conclude, the
estimation step in the random sampling loop must be fast
because it has to be run many times and must provide an
estimation of H as accurate as possible.

3.2. A quasi-linear estimator

Let us devise an estimator for H that minimizes an Eu-
clidean distance. In principle, such an estimator is non-
linear because of the non-linear nature of the pinhole cam-
era, model. However, as described below, we have been
able to devise a method which starts with a linear esti-
mate of H and which incrementally and linearly updates
the Euclidean error. Therefore, this method combines the
efficiency of a linear estimator with the accuracy of a non-
linear one. In practice it converges in a few iterations (2
to 3) and the solution thus obtained is very close to the
solution that would have been obtained with a standard
non-linear minimization method (see Figure 2).

The method described below can deal with a number of
point matches equal or greater than 5. Within the robust
method described above it is however desirable to use the
minimal set of points — 5 points in our case.

With the notations already introduced in section 2 let
X be the vector of 3-D projective coordinates obtained
by reconstruction from its projections  and x’ onto the
first image pair. Matrix H maps these coordinates onto Y
such that Y = pHX, and matrices P and P’ reproject
these coordinates onto the second image pair. Therefore
we have the following estimated image points:

of = PHX (3)
o'y =P'HX (4)

et &MV WRVMEY I W I
a and o'. By dividing the first and second components of
these vectors with their third component we get estimated
image positions as opposed to ¥ and y’ which are measured
image positions. The Euclidean distance between the mea-
sured point position y and the estimated point position ¥
is:
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with § ' = (4y 9y ty) and y' = (uy vy 1).

Let us write matrix H as h, a vector in IR'® such that
h = (Hll Hy, ... H44)T = (hl . hl(;)—r
By substituting eq. (3) into eq. (5) and with the nota-
tion:
1

1
= (6)
t, (PHX)®
we obtain for the Euclidean error for the left image:
2 2
16 16
g2 = w? Zajhj + w? ijhj (7)
j=1 j=1

where the a; and the b; coefficients depend on ¢, X and P.
Since we deal with an image pair the reprojected Euclidean
error is:

=2 +¢" (8)

For m point matches we obtain the following criterion:

E =) ¢ 9)
=1
16 2 16 2
= Z wf aijhj +w? Zbijhj
i=1 j=1 j=1

2 2

16 16
12 ! 12 ;
w; E az-]-hj + w; E bijhj
j=1 j=1

+

(10)

It worth noticing that H is defined up to a scale factor.
Then another constraint we can impose is ||h|| = 1. In
order to find the matrix H or, equivalently, the unit vector
h which minimizes the criterion E of eq. (10) we suggest
the following incremental estimation method (notice that,
by definition, the parameters w; and w; are dependent of
H):

1. Initialization: Let w;(0) = 1 and w}(0) = 1. Estimate
H(0) using eq. (10);
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the current solution for H(k), i.e., eq. (6);

=) R

et ACAAR Y S o

3. Minimize the criterion E(k 4+ 1) of eq. (10) using
standard weighted linear least-squares to estimate H(k +

1);
4. Stop test: when W < Z‘ then stop, else

return to step 2. Here we chose ¢ = 10~

The quasi-linear estimator requires low cost computa-
tion because each iteration of the loop only involves a stan-
dard weighted linear least-squares (based, in practice, on
the Singular Value Decomposition technique). Moreover
the quasi-linear estimator generally converges in two or
three iterations.

Furthermore the quasi-linear estimator minimizes a ge-
ometric error and therefore it is less noise-sensitive than
standard linear estimators [1] and appears to be well
adapted when used in the inner loop of RANSAC: the er-
ror function associated with the inliers/outliers selection
being defined by eq. (8).

3.3. Experiments with synthetic data

Experiments with simulated data are carried out in or-
der to compare the quality of the results.

A synthetic 3-D scene consisting of 140 points is gen-
erated and placed at two different locations in the 3-D
space. The 3-D points of each position are projected onto
the cameras of a virtual stereo rig and Gaussian noise with
varying standard deviation (from 0.0 to 1.6 pixels) is added
to the image point locations. Data are normalized as de-
scribed in [5] and three different methods are applied :
the quasi-linear estimator, a standard linear method [1]
and a classical non-linear optimization method, such as
Levenberg-Marquardt, initialized with the quasi-linear es-
timator.

This process has been performed 100 times. The mean
and standard deviation of the error function in eq. (8)
for each method are shown on Figure 2. It shows that
for noise under 1.0 pixel, the quasi-linear and the non-
linear methods give very close results. It also shows the
efficiency of the quasi-linear method in comparison with
the standard linear method described in [1]. Furthermore
it is faster: depending on the scene it is usually two to
three times faster than the non-linear algorithm.

The convergence rates for varying levels of noise and
number of points in the scene are studied for different
methods: (i) the quasi-linear estimator (ii) the non-linear
optimization method initialized with the standard linear
estimator and (iii) the non-linear optimization method ini-
tialized with the quasi-linear estimator. Results are re-
ported respectively on Figures 3, 4 and 5.

is initialized with the quasi-linear estimator, it always con-
verges (as well as the quasi-linear estimator itself). On the
contrary, when it is initialized with the standard linear es-
timator, it often falls in local minima. It can be explained
by the fact that the quasi-linear estimator minimizes the
same error as the non-linear optimization method, i.e. a
geometric error in image space, whereas the linear estima-
tor minimizes an algebraic error.
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Therefore the quasi-linear estimator is a good compro-
mise between accuracy and computation speed, fits very
well with the estimation step of inner loops in robust al-
gorithms like RANSAC or LMedS and provides a good
initialization for non-linear optimization methods.

4. DETECTION OF MOVING OBJECTS

Let P1,..., Ps, ..., Py be a sequence of image pairs gath-
ered with a stereo rig. Let H, be the projective motion
associated with the sensor’s egomotion between the image
pairs Ps and Psy1.

The projective motions H, are estimated with the ro-
bust estimator described in Section 3. In order to discrimi-
nate between static scene points from moving scene points
we compute, for each tracked point, a global error over the
whole sequence.

Let M be a 3-D point tracked through the pairs P; to P;.
For each t, i <t < j, eq. (8) defines the discrepancy e(s)
between the true motion of M and the motion predicted
by H;. In other words, large e(s) indicates that M is not a
static point. In order to robustify this motion measure, we
take the average €2 of e?(s) over the image pairs in which
M is observed, that is:

) 1 i
&2 = T Z e2(s)
8§=1

The observed scene points are then divided into two cat-
egories. Points M such that é < t/, are selected as static
points (. being the threshold defined in Section 3). The
other points are considered as non-static points.

However these non-static points have two interpreta-
tions. On one side they may belong to moving scene ob-
jects and on the other side they may be “real outliers”,
i.e., mismatched and/or mistracked points.

In order to further classify the non-static points into
points belonging to various moving objects and into real
outliers we suggest to use data classification techniques.
Generally speaking, such a technique groups the available
data into several classes based on some metric. The data
that we want to classify are the scene points denoted by
M. Let M, ..., M, be the non-static points found by the
robust method just described.
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grouping in the same cluster points being close to each
other in all the sequence. However, since the 3-D recon-
struction is projective one cannot define a metric in 3-D
space. Therefore the distance we propose between points
M is based on image point distance.

Let z1(s) and z)(s) be the image projections of Mj
respectively onto the left and right images of P,. If M;
and M, are two points appearing together through the
pairs P; to Pj, we define the distance between these two
points as:

6(My, M) = irélggj{d(ml(S);932(8))761(93'1(8);33'2(5))}

251
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iterative linear|
non-linear

20

o
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FIG. 2. Comparison between the different methods in the presence
of image Gaussian noise.

| nb. points | noise level |
| | 00 02 05 08 1.0 12 1.6 |
| 10 pts | 100 100 100 100 100 100 99 |
| 30 pts | 100 100 100 100 100 100 100 |
| 100 pts | 100 100 100 100 100 100 100 |
| 300 pts | 100 100 100 100 100 100 100 |
FIG. 3. Convergence rates (in %) of the quasi-linear estimator
| nb. points | noise level |
| | 00 02 05 08 1.0 1.2 16 |
| 10pts | 100 100 8 68 68 63 61 |
| 30pts | 100 100 97 92 8 86 80 |
| 100 pts | 100 100 99 99 89 91 85 |
| 300 pts | 100 100 100 100 100 100 100 |
FIG. 4. Convergence rates (in %) of the non-linear method initial-

ized with a standard linear estimator

et agiaditiad et gl i

belong to the same moving object are close to each other
in all the images in which they appear together.
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In addition to the point-to-point metric defined above
the classification algorithm needs a cluster-to-cluster met-
ric. The latter is defined as a single linkage distance:

A(C4,Ca) = 6(M1, Ms)

min (11)
M €C1,M2€Cy

where C denotes a cluster.

Therefore, the goal is to group within the same cluster
those points which are close together and to throw out
isolated points. Among the many data classification tech-
niques available, the hierarchical clustering algorithm [10]
with single linkage is well adapted for our purpose for sev-
eral reasons. First, it does not need to know in advance the
final number of clusters to be found, which means it does
not need to know, a priori, either the number of moving
objects present in the scene, or the number of real outliers.
Second, it uses a simple stop procedure based on the min-
imum distance allowed between two clusters. Third, the
method is fast because the cluster to cluster distances are
efficiently updated.

At initialization there are as many clusters as there are
points to be grouped. At each iteration of the algorithm
the distances between all clusters are evaluated and the
two clusters for which this distance is the smallest are
merged together. The merging of clusters is thus repeated
until the smallest distance is higher than a threshold .
It is worth noticing that if a dense matching is performed,
a small value t; can be confidently chosen.

Based on location only, the segmentation algorithm seg-
ments the scene into dense moving areas and contrary to
many approaches it is able to successfully segment scenes
in the presence of non rigid objects.

5. TRACKING WITH A RIGID STEREO RIG

In order to obtain point correspondences between many
views, we propose a tracking algorithm that enables, from
a sequence of image pairs gathered with a stereo rig, to
(i) extract and track points along the sequence and (ii) in-
crementally estimate the epipolar geometry of the camera

| nb. points | noise level |
| | 00 02 05 08 1.0 12 1.6 |
| 10 pts | 100 100 100 100 100 100 100 |
| 30 pts | 100 100 100 100 100 100 100 |
| 100 pts | 100 100 100 100 100 100 100 |
| 300 pts | 100 100 100 100 100 100 100 |
FIG. 5. Convergence rates (in %) of the non-linear method initial-

ized with the quasi-linear estimator
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rithm are the interest points: these points are detected in
all the images of the sequence by a corner detector [4].
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A key idea of the approach is that, using a rigid rig, the
epipolar geometry is constant over time and can therefore
be estimated using a sequence of image pairs. The estima-
tion of the epipolar geometry is well known to be subject
to degeneracies when estimated from a single pair of im-
ages. Using several pairs of images enables to remove most
of these degeneracies and therefore makes the computation
of the epipolar geometry more stable and accurate.

The tracking algorithm is described below and illus-
trated on Figure 6.

Let &; be a set of left-to-right correspondences associ-
ated with the image pair P;. These left-to-right correspon-
dences are the projections of scene points M;i...My that
we want to track through the sequence.

Therefore the tracking algorithm consists in finding the
sets S, of left-to-right correspondences associated with the
projections of the scene points M;...My onto the image
pair Ps.

The tracking is performed using an iterative approach.
& is obtained using the robust estimator [24] and for all s,
Ssy1 is derived from S by the following way:

e For each match in image pair S; we look for all the
potential matches in image pair Ss41 such that they ver-
ify that (i) the four points associated with these two
matches must have almost identical photometric profiles,
and (ii) the epipolar constraint is verified. Based on these
two constraints it is possible to select the best match in
Ss+1.

\‘&

|

image pair PS

image pair P o1

FIG. 6. Points tracked between two successive image pairs
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formed using all the left-to-right correspondences available
from Sy, ..., Ss41 with the robust estimator [24]. This step
enables to refine the estimation of the epipolar geometry
over time.

e S.y; is then updated: the correspondences which no
longer satisfy the newly estimated epipolar geometry are
removed (this case mostly arises when these points have
been wrongly matched in the previous part of the se-
quence).

The tracking process then goes on until the end of the
sequence and enables then to robustly:

e compute the epipolar geometry of the camera pair;
e match and track points between successive image
pairs.

Moreover, an important feature of the tracking algo-
rithm is that it enables to estimate the accuracy of point
location ¢ introduced in Section 3.1 for the computation of
the thresholds ¢, and ¢.. ¢ is computed as the standard de-
viation of the errors of all the left-to-right correspondences
of the sequence with respect to the epipolar geometry of
the stereo rig.

6. EXPERIMENTS WITH REAL DATA

This section describes two experiments using real im-
ages. The same stereo rig has been used for each experi-
ment . It consists of two similar cameras. The baseline is
about 30 ¢m. and the relative angle between optical axes is
between 5.0 deg. and 10.0 deg. (convergent configuration).
The stereo rig has been moved while capturing sequences
and the following process is applied to each sequence:

e Points are extracted and tracked with the tracking
algorithm and the epipolar geometry of the stereo rig is
estimated;

e The projective motions H; associated with the sen-
sor’s egomotion are estimated;

e A global error é is computed for each tracked point
with respect to all H, and used for selecting static/non-
static points;

¢ the segmentation of outliers into different moving ob-
jects is performed.

Both sequences involve the same static scene: a robotic
laboratory. In the first sequence, a single man is walking
from left to right. In the second sequence, two men are
walking (both from left to right). These stereo sequences
(see Figures 7 and 8) consist each in nine image pairs that
can be obtained at:

http://www.inrialpes.fr/movi/people/Demirdjian/



FIG. 7.
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Stereo sequence 1. Each column is an image pair of the sequence.

FIG. 8.

Stereo sequence 2. Each column is an image pair of the sequence

FIG. 9.

It can be noticed that the static scene is composed of
different levels of depth (walls, car, ...) and that the mo-
tions involved in the sequences are small. However in each
experiment, the detection of the static points has been
successful (see Figure 9). We can notice that in both

Detection of static points in sequences 1 and 2

sequences feet on the ground are sometimes detected as
static but this can be explained by the fact that these feet
have almost not moved in the sequence.

The threshold t; required for the clustering algorithm
has been fixed to 30 pizels. The evolution from the first to
the last iteration of the clustering algorithm is shown on
Figures 10 and 11. We can see that in each case, points



FIG. 10. Evolution of the clustering at iterations 1, 30, 62 and 69 (last) respectively



FIG. 11. Evolution of the clustering at iterations 1, 15, 37 and 42 (last) respectively

belonging to the same object are gathered in the same
cluster. We can also notice that during the iterations of
the clustering algorithm, the biggest clusters always cor-
respond to parts of moving objects.

7. CONCLUSION

In this paper, we have described a method to detect
moving objects with a moving stereo rig. Our approach
is divided into three steps: (i) a stereo tracking process
that simultaneously tracks points along a sequence of im-
age pairs and robustly evaluates the epipolar geometry of
the stereo rig, (ii) a robust egomotion estimation method

based on 3D projective constraints, and (iii) moving object
detection using image constraints.

We showed that, using a moving stereo rig, the detection
of motion could be performed in a projective framework
and therefore does not require any camera calibration. We
improved the detection of static points in the case of small
motions (i) by using RANSAC in conjunction with a quasi-
linear estimator that accurately estimates projective mo-
tions (minimizing a geometric error) and (ii) by selecting
inliers/outliers with respect to a global error estimated
over the whole sequence.

We introduced a segmentation based on the detection
of dense moving areas and we showed that this segmen-
tation could be performed using a classical classification
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gorithm has been chosen such that it benefits from the
redundancy available from the multiple images of the ob-
served sequence.

W

Finally the method needs no initialization and by this,
e argue that the framework presented here can be used

in many applications requiring an automatic moving ob-
ject detection such as autonomous robotics or surveillance
systems.
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