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Controlling Robots With Two Cameras: How to Do it Properly. *7

Bart LAMIROY, Bernard EsPIAU, Nicolas ANDREFF, Radu HORAUD
INRIA Rhone-Alpes, 655 Avenue de ’Europe, 38330 Montbonnot, FRANCE

e-mail: Frist. Last@inrialpes.fr

Abstract

In this paper we address visual servoing through a
fixed stereo rig using an image Jacobian. Existing
methods are based on the stacking of monocular servo
image Jacobians, resulting in largely over-constrained
control commands. In this paper we formally show
that the epipolar constraint between two images can
be taken into account explicitly. We then show that
use of stereo significantly increases the quality of the
servo task execution, especially where precision, ro-
bustness and smoothness of movement is concerned.

1 Introduction

In this paper we consider visual servoing as a task
function [10]. Several approaches of robot control us-
ing a single camera [3, 5] or stereo rigs [9, 4] exist. In
the case where only a single camera is concerned, a
certain number of assumptions, such as camera cali-
bration need to be made. In that case, however, the
problem is sufficiently constrained and a minimal set
of control variables can be used. One has to bear in
mind that a number of singularities exists, making vi-
sual control impossible near those configurations (e.g.
180 degree rotations [2]).

The use of a stereo rig avoids these singularities, and
requires less strict camera calibration. The existing
approaches are, however, quite ad hoc and restricted.
In this paper we propose a formal framework for using
stereo servoing. We show that the epipolar constraint
can be taken into account for all camera configurations
and that the use of stereo control has a great number
of advantages with respect to monocular servoing.

The paper outline is as follows:

e First, we introduce the notions of monocular and

*To be presented at the IEEE International Conference on
Robotics and Automation (ICRA), April 24-28, 2000, San Fran-
cisco, USA.
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stereo servoing.

e In section § 3, we develop the formalism of con-
strained stereo servoing, applied to the epipolar
constraint.

e Next, we compare our approach to the approach
consisting in the stacking of monocular Jacobians.
We show that in certain cases both approaches are
identical, but that in a number of situations the
constrained approach is preferable.

¢ Finally, we show, by a series of experiments, that
stereo servoing behaves better than monocular
servoing in a large number of situations.

2 Visual Servoing

It is known [3, 5] that, given the proper knowledge on
an observed 3D point set {S;},_; ,. and its (fixed)
position within the reference frame of a robot end-
effector, it is possible to control this robot so to align
the projection s of the point set {S;} in an image
with a predefined goal position in this image (generally
denoted s*) under condition that s* is the projection
of an attainable 3D position §*. This is represented in
Figure 1 for the monocular case (i.e a single camera
is controlling the robot).

In that case, the observed image speed § of the con-
sidered point set is related to the effector speed, ani-
mated with the kinematic screw 7, through the image
Jacobian J by the following equation:

§=J3T (1)

By imposing that the observed point set s moves
towards the required goal position s* (ie. § =
g(s*—s)), we can compute the kinematic screw 7
to be sent to the robot end-effector within a control
loop:

T =93 (s*—5) (2)
where g is a scalar gain factor, J* the 6 x 2m pseudo-
inverse of the image Jacobian and (s* —s) the ob-
served 2m error vector in the image. The kinematic



Figure 1: Fixed monocular visual servoing: the observa-
tion of a set of well known control points allows to compute
the kinematic screw 7 that aligns the observed position s
with a required goal position s*.

screw is updated at each control loop iteration with
the newly observed error, and, in certain cases with a
newly computed Jacobian [5].

Now, the formalism of this approach does in no extent
impose that the measured error comes from just one
image. It can be rewritten to take into account two
images (or more) in a very straightforward manner.
Suppose we observe the movement of a set of 3D points
{Si};__,, in two different cameras C! and C". We
suppose also that these points are rigidly fixed to the
robot end-effector, and that the latter is animated by
a kinematic screw 7. Then, because of the rigidity
constraint, the following equations hold:

sl =J,T
s =J,7

or, concatenating the two matrices,
1
S _ Jl
(7)) = ()
o= 3T (3)
which is exactly the same equation as (1), and gives

rise to the same solution as the one presented in equa-
tion (2). The 3D velocity induced by the command

g I:(J;I;r‘]-l—r)_l J,Tﬂ] (sl—r* _ Sl—r)

g J;—r (sl—r* _ Sl—r) (4)

T

T

now tends to obtain a simultaneous convergence in two
images rather than in just one single view, as was the
case in equation (2).

Remarks:

1. It is clear that the stereo Jacobian obtained by
stacking two monocular Jacobians is largely over
constrained, and that the control data s are re-
dundant. Indeed, s' and s are related by the
epipolar geometry of the stereo rig [7, 8]. This
redundancy should be taken into account when
computing the pseudo-inverse of the Jacobian ma-
trix. In this paper we show that the epipolar con-
straint can be modeled formally, something which
has never been done before!.

2. Another point concerns the 3D trajectory exe-
cuted by the robot under monocular and stereo
servoing. In both cases, the expected image tra-
jectory (2D) is usually a straight line. However,
in the monocular case, there is no guarantee that
this straight 2D line translates into a straight 3D
trajectory, since any planar curve can project into
a line. On the other hand, the 3D trajectory in
the stereo case projects into a line on either im-
age, imposing de facto a straight line movement
in space.

In the next section we shall show how the epipolar con-
straint can be taken into account to compute a new
Jacobian which takes into account the relationship be-
tween the left and right image points.

3 Constrained Servoing

3.1 Notations

Consider a fixed stereo rig, with known epipolar geom-
etry F. The rig observes a set of m 3D control points
{Si};,_1._, Projecting into the left (resp. right) image
in {si};o1 n (respe {87}y m)-

Let s; be the 4 x 1 vector (st s7T)T formed by the
concatenation of the left and right projections of the
3D control point S;, and let sT be the 1 x 4m vector
(s{ ...s},) the concatenation of all 8;=1...

The homogeneous coordinate notation of st (resp. s7)
will be referred to as 3! (resp. 87), such that the epipo-
lar constraint h; between both points can be expressed
as follows [7, 8]:

h; = 5 F&l =0.

1In the case where the images are rectified, the redundancy
is easily expressed as sg = sy and can be treated by simply
neglecting the y-component of one of the points. This is what

was done by Hager et al. in [4]



3.2 Establishing the Control Com-
mand

Let s* be an attainable visual goal position and s
the observed current position of the set of 3D points
{Si};—1. - Then, the visual servoing problem can
be expressed as the minimization of the error norm
t(s— s*)T (s — s*) by interacting with the robot con-
trol parameters [3].

In our case, the vector s is obtained through a fixed
stereo rig, and is therefore constrained by the epipo-
lar geometry. A particular case, when both images
of the stereo rig are rectified, has already been devel-
oped in [4]. In the general case, the above minimiza-
tion problem can be rewritten to take into account the
constraints on s, and thus becomes:

L=2(s—8) (s—s)+ATh

N =

A being the Lagrange multiplier, and AT = (hy ... hy,).
If the 4m x m gradient matrix G corresponding to %
a

is of full rank m , then solving for a_§ = 0 yields

P(s—s*)=0

-1
where P = Id— GT (GGT)  G. P is the rank 3m
symmetric, 4m X 4m orthogonal projection operator
onto Ker (h) (See [10] pp. 122-124 for details). We
need to prove before, however, that G is of full rank
m.

1. Formalism of g’;f.

_ AT
hi = 8; F§;

_ (s
Si = 52.

— ‘I)[2><2] ‘I’lm x 1]
F = T

¢2 [1x 2] ¢3

Therefore we can write the 4 x 1 vector

L (5)
dsi SéTQ + @y
2. Rank of G.
G is of full rank m iff 5% # 0Vi. Suppose 3 :
Oh;
a_sj- =
Oh;

5s; 0

st + @,
8TF~ (0 0 1)
STTFT =~ (0 0 1)
The epipolar lines associated to s ang?)
s; are of the form 0z + 0y + ¢ =0.

7_-Tq>T @T
s (51 R (6)

<
<

It is clear from equation (6) that there exists at
least one s that satisfies the condition iff —®; €
Im (®) and —®, € Im (®7). So G cannot be
guaranteed to be of full rank.

However, the following geometric proof shows
that the equivalent constraints, formulated in
equation (7), restrict the case to very particular
camera, positions that can easily be avoided. In a
generic setup, G is always of rank m.

Proof: Consider a fixed stereo rig of cameras
C1 and Cy. 7; represents the image plane of cam-
era C1, f1 its focal point, and F; the focal plane
(resp. Za, f2, Fo for camera Cs ; as represented in
Figure 2). Since, for any camera, the locus of the

Figure 2: Generic configuration of a stereo rig for which
G may not be of full rank m. The focal points of the
cameras lie on the intersection between their respective
focal planes.

points projecting at infinity in the image plane is,
by construction, its focal plane, any 3D line pro-
jecting onto (00 1) lies on the focal plane of that
camera.

Now, from equation (7) we know that G is not of
full rank when both epipolar lines of two observed
points (one in each image) 3’ and 3" are (001).

This means that:

(a) The line of sight of the point &' in image Z;
lies in the focal plane F5. Since the focal
point f; of camera C;, by definition, lies on
the same line of sight, we can conclude that
fr € Fo.

(b) The same reasoning holds for §" in image Z»:
the point lies on the focal plane F; as does
the focal point fs.



If using typical ccd cameras with 8 — 16mm lenses
this setup is impossible to attain, so we can con-
sider that G is always of rank m. Furthermore,
we did not take into account the fact that & and
§" are the projections of the same 3D point S, in
which case S is constrained to lie on the intersec-
tion between F; and Z,, defeating the assumption
that 5! and 3" are visible points.

O

Since F is known up to a scale factor, G is also known
up to a scale factor. However, this factor is can-
celed out in the computation of P, and P is defined
uniquely.

Proof:
let G = vG' then

P = Id-G"(GG") 'G

- a-Ta(ge") ‘a
= li-— (GGT)

1 1.1 1
= Id-—=-GT (—G—GT) -G
v vy o

- 1d-g'" (G’G’T) el

O

Now that we have shown that we satisfy the conditions
expressed in [10] for constrained redundant task func-
tions we can express our visual servoing task as the
minimization of a new control vector e. Our control
vector now becomes e = P(s — s*). In order to ob-
tain an exponential convergence rate, ideal behaviour
is € = —ge, where g is a positive scalar gain factor.
This can be rewritten as

é=Ps+P(s—s*)
e=—gP(s— s
§=JT

In near convergence conditions, P (s — s*) can be ne-
glected, in analogy with [10], resulting in

—gP(s—s*)=PIT (8)

The kinematic screw needed in order to obtain optimal
error convergence is obtained by minimizing

J= % (gP (s —s*)+PIT) (gP (s —s*) + PIT)
which gives

T=—g (ITPI) " ITP(s — 5¥) (9)

—gP (s —s*)=PIT+P (s — s

It is easily noted that equation (4) in the uncon-
strained servo version, is a particular case of the above
equation (9), with P = Id.

4 Constrained wvs. Uncon-
strained Stereo Servoing

In the previous section we developed a constrained
stereo servo task function in which we integrated the
epipolar constraint over a set of matched points. How-
ever, in most setups the 3D control points are part of
a rigid object, fixed on the robot end-effector. Due
to this rigid link, the epipolar constraint is implicitly
verified (noise and deviations due to image treatments
set apart). We formally show in this section, that, in
the noiseless case and using rigid control points, both
approaches are strictly identical.

Starting from equations (4) and (9) we obtain the
following equations:

T = (33717 (10)
T = (I"PI) IR (11)
Since s respects the epipolar constraint h(s) = 0 by

construction, it therefore is invariant under the projec-
tion P onto the kernel of the constraints h: s = P s.

h(s) =0
= & —9
=> s =0
= GJT =0VT
= GJ =0
= PJ =7 (12)

From which we conclude that
(373) 3T =(3"P3) 'J7P
O

This shows that the simple least-squares minimization
in equation (10) is an as good approximation (and
computationally less expensive) as the complete con-
strained framework developed by equation (11). In-
deed, when the the control points used for visual ser-
voing are detected with a sufficiently high precision
(in the case of reflecting circular patches, detection
precision can go up to 0.05 pixels [1]) the real world
conditions are very near noiseless. This will be further
shown by the experiments described in section § 5.
The above demonstration also justifies the existing ap-
proaches to the subject [9, 4] of which the theoretical
soundness had never been proved.



Although both approaches (constrained and uncon-
strained) are identical in the noiseless case, two fun-
damental advantages of formally constraining the Ja-
cobian remain:

1. In cases where the task is intrinsically under-
constrained (i.e. when the DOF controlled by
the observed data are too few compared to the
DOF controlling the robot) the role of the control
points can be reduced to its real dimension, thus
allowing the introduction of complementary tasks
for filling out the missing degrees of freedom [10].

2. In cases where the task goal s* is only roughly
computed or when the localization of the control
data s is unprecise, the constrained approach will
guarantee that the final attained position is cor-
rectly constrained with respect to the epipolar ge-
ometry and allows for an @ priori correction of s*.

5 Experiments

In this section we’re showing the results of a series
of experiments in a real servoing environment. We’re
first comparing the improvement that can be expected
from using stereo servoing with respect to monocular
servoing. In a second series of experiments we show
that in a real-world environment where we can de-
tect the 2D control points with sufficient accuracy, the
constrained and unconstrained servo control laws give
raise to identical behaviour, thus supporting the above
demonstration.

5.1 Experimental Setup

In order to observe and quantify the behaviour of a
visually controlled robot R in different circumstances,
we used the configuration shown in Figure 3.

We register two 3D positions of the robot, S and S*.
S will serve as the initial position and S* as the re-
quested goal position. A rigid stereo rig (rigid in the
sense that both cameras are rigidly linked one to an-
other, or, on other terms, that the fundamental ma-
trix of the rig F is fixed.) observes the robot from a
set of different view points {P;},_; o9. The appropri-
ate computer vision algorithms (currently unpublished
work, but the reader can refer to [6] for a general out-
line) allow us to compute the required goal positions
s* in each of the views at all positions P;. The pre-
cision of these computed goal positions depends of a
large number of parameters, and the committed er-
ror can be assumed to be Gaussian around the ideal
position.

P

Figure 3: Experimental Platform: the robot R observed
through a rigid stereo rig moves from position S to S*
under visual servoing for each of the positions P; of the
rig. The absolute 3D positions of S and S* being known,
it is possible to assess the committed error for each of the
positions P;.

At each of the rig positions P; we now dispose of suf-
ficient information to servo the robot from § to §*
using either one of both cameras using a monocular
servo loop, or both, using a stereo servo loop.

5.2 Monocular vs. Stereo Servoing

In this section we are concerned by quantifying the
difference in servo quality between mono and stereo
servoing. This quality can be measured through dif-
ferent observations: 2D trajectories, 3D trajectories,
2D convergence quality, 3D convergence quality and
movement smoothness.

5.2.1 2D Trajectories

In theory, both approaches, mono and stereo, should
result in straight line image trajectories. We can ob-
serve, however, that in some cases, especially when
the image Jacobian is roughly estimated, image tra-
jectories deviate from this norm. The reasons for this
will be discussed in section § 5.2.4. Our experiments
have shown that stereo servoing tends to reduce these
deviations, as shown in Figure 4.

Figure 4 shows the image trajectories in left and right
images, resulting from two monocular servoing exper-
iments and one stereo. Both full and zoomed images
are shown.

The stereo trajectories are straight lines (represented
for the four control points in cyan, yellow, magenta
and bright green), while the monocular trajectories (in
blue, dark green, cyan and red) present some severe
deviations from the straight line image path.
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Figure 4: Examples of deviating image trajectories in the
image. Upper images come from the left camera, lower
images from the right camera. Straight line trajectories
come from stereo servoing, skew trajectories (principally
left image) come from mono servoing.

These results correspond to the experiment reported
in section § 5.2.4 where we show that stereo control
naturally smoothes out control commands sent to the
robot. The principal reasons for this behaviour will
be given there.

5.2.2 2D Convergence Quality

The density plots in Figure 5 give strong indications
that the image convergence error is Gaussian for each
of the three servo methods. This error is measured
with respect to the computed s* at convergence.

Note, however, that the 2D convergence error is
smaller in the case of monocular servoing. This is
due to the fact that the computed goal position s* is
subject to errors. In most cases, the erroneous po-
sition is attainable in either of the images (small 2D
convergence error) however it is not simultaneously at-
tainable in both. The stereo servoing 2D convergence
error is therefore larger, and consists of a minimization
compromise between both images.

The measurements, concerning the 3D convergence,
presented in the next section, will confirm this, since
stereo servoing, due to this minimization, has far bet-
ter global results where 3D positioning is concerned.

.
.
*

.
.

.
$
.

Figure 5: Committed error densities between computed
image goal position s* and s (representing 4 control points)
at convergence. From left to right and top to bottom:
left image, right image, cumulated left and right image,
cumulated stereo.

5.2.3 3D Convergence Quality

Since the attained 2D goal positions follow a Gaussian
distribution, we can assume that the 3D positioning
error at convergence is equally Gaussian. Therefore,
the error norm follows a x3 distribution.

Figure 6 shows the 3D Cartesian positioning errors
observed for the three experiments over 99 positions
P;. We note that there is a notable improvement in
the positioning of the effector when servoing is done
with two cameras.

We equally observe the difference in performance be-
tween the left and right cameras. This difference is
due to the fact that the 3D position of the control
points and the lighting conditions during the exper-
iment were in favour of the left camera (less skew,
less specularities and better contrast due smaller re-
flection angles). In order to take into account the bias
introduced by these external parameters we should cu-
mulate the committed errors with both left and right
cameras when comparing them to those committed in
the stereo case. In that case, we obtain de error dis-
tribution given in Figure 7.

5.2.4 Movement Smoothness

In this section we analyze the kinematic screw sent
to the robot under visual servoing. Figure 8 shows
that the resulting kinematic screws for the same ex-
periment as reported in section § 5.2.1 represent a
number of irregularities in the monocular case that
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Figure 6: 3D Cartesian Convergence Quality: histogram
of committed 3D positioning errors at convergence with,
superposed, the corresponding estimated x? distribution.
r-axis is expressed in meters.

The mean and variance for the corresponding experi-
ments are given in the following table:

o o
Left 0.0074 | 1.11077
Right | 0.0142 | 3.6 10~ *
Stereo | 0.0047 | 2.910~°

are absent in the stereo case.

The following remarks need to be made in order to
correctly interpret the graphs in Figure 8:

1. We used a variable Jacobian approach instead of
a fixed Jacobian. This means that at each loop
iteration J is re-estimated according to the im-
age data. This guarantees, in the noiseless case,
an absolute straight image trajectory for all ap-
proaches.

2. We implemented a variable gain for speed up at
convergence. This explains why, between itera-
tions 60-70, the kinematic screw increases again.
This also explains the amplitude of the oscilla-
tions that occur near convergence.

3. No filtering has been used on the screw values,
in order to easily observe the differences between
the experimented methods.

The most notable difference between the monocular
and stereoscopic approaches is the absence of sharp
peaks in the latter. These peaks are due to numer-
ical instabilities that occur when re-estimating the
Jacobian in the monocular case. This re-estimation
requires a pose computation that can sometimes be
fooled into believing that the observed points have
flipped around a plane parallel to the image plane.
Use of redundant information in the stereo case filters

— Mono
= Stereo

n | |
o
-0.01 o 001 002 003 004 005 006 007 008 009

Figure 7: 3D Cartesian Convergence Quality: histogram
of committed 3D positioning errors at convergence with,
superposed, the corresponding estimated x? distribution.
z-axis is expressed in meters.

The mean and variance for the corresponding experi-
ments are given in the following table:

m o
Mono | 0.0108 | 2.510~*
Stereo | 0.0047 | 2.9 10~°

this out, resulting in smoother velocities and trajecto-
ries.

5.3 Constrained vs. Unconstrained

Stereo Servoing

This section briefly shows how we can observe
the equivalence between the constrained and uncon-
strained case when the image control points can be
extracted with sufficient precision.

Figure 9 compares the 3D cartesian error commited
over the same 99 experiments reported previously.
The left part superposes the constrained and uncon-
strained absolute errors. For readability, the right
part plots the difference between the two superposed
graphs. Note the order of magnitude, which is below
the millimeter (y-scale is in meters).

Figure 10 plots the kinematic screw applied over one
particular experiment (the same as the one reported
in § 5.2.1 and § 5.2.4). One clearly observes the near
perfect superposition of the curves.

6 Conclusions

In this paper we have shown both formally and exper-
imentally that the pseudo-inverse of a stereo Jacobian
matrix, obtained by the stacking of two monocular Ja-
cobian matrices implicitly projects onto the epipolar-
constraint space. This means that, as long as the ob-



Figure 8: Kinematic screws for left (top), right (middle)
and stereo (bottom) servoing. Translational speed is given
on the left, in m.s™ !, rotational speed, on the right, is in

deg.s™1.

served control points are sufficiently precise, it is un-
necessary to explicitly take into account constrained
minimization.

We have also shown that the use of stereoscopic ser-
voing holds a real advantage over monocular servoing
in all domains: 3D trajectory, movement smoothness
and 3D convergence.
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