Algebraic structure of the families of compatible frames of discernment

Abstract : One of the major ideas of Shafer's mathematical theory of evidence is the introduction of uncertainty descriptions on different representation domains of phenomena, called families of compatible frames of discernment. Here we are going to analyze these families of frames from an algebraic point of view, study the properties of minimal refinements of collections of domains and introduce the internal operation of maximal coarsening to establish the structure of semimodular lattice. Motivated by the search for a solution of the conflict problem that arises in sensor fusion applications, we will show the connection between classical independence of frames as Boolean subalgebras and independence of frames as elements of a locally finite Birkhoff lattice. This will eventually suggest a potential algebraic solution of the conflict problem.
Type de document :
Article dans une revue
Annals of Mathematics and Artificial Intelligence, Springer Verlag, 2005, 45 (1-2), pp.241-274. 〈10.1007/s10472-005-9010-1〉
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00590183
Contributeur : Team Perception <>
Soumis le : vendredi 6 mai 2011 - 11:37:16
Dernière modification le : vendredi 6 mai 2011 - 11:38:56
Document(s) archivé(s) le : dimanche 7 août 2011 - 02:29:41

Fichier

amai05.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Fabio Cuzzolin. Algebraic structure of the families of compatible frames of discernment. Annals of Mathematics and Artificial Intelligence, Springer Verlag, 2005, 45 (1-2), pp.241-274. 〈10.1007/s10472-005-9010-1〉. 〈inria-00590183〉

Partager

Métriques

Consultations de la notice

64

Téléchargements de fichiers

73