Learning Riemannian Metrics for Classification of Dynamical Models

Abstract : Consider the problem of classifying motions, encoded as dynamical models of a certain class. Standard nearest neighbor classification then reduces to find a suitable distance function in the space of the models. In this paper we present a supervised differential-geometric method to learn a Riemannian metric for a given class of dynamical models in order to improve classification performances. Given a training set of models the optimal metric is selected among a family of pullback metrics induced by the Fisher information tensor through a parameterized diffeomorphism. Experimental results concerning action and identity recognition based on simple scalar features are shown, proving how learning a metric actually improves classification rates when compared with Fisher geodesic distance and other classical distance functions.
Type de document :
Rapport
[Technical Report] 2005, pp.12
Liste complète des métadonnées

Littérature citée [40 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00590198
Contributeur : Team Perception <>
Soumis le : vendredi 6 mai 2011 - 15:18:26
Dernière modification le : vendredi 16 septembre 2016 - 15:14:49
Document(s) archivé(s) le : dimanche 7 août 2011 - 02:31:12

Fichier

CSD-TR050054.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00590198, version 1

Collections

Citation

Fabio Cuzzolin, Stefano Soatto. Learning Riemannian Metrics for Classification of Dynamical Models. [Technical Report] 2005, pp.12. 〈inria-00590198〉

Partager

Métriques

Consultations de la notice

82

Téléchargements de fichiers

132