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Building Segment-Based Maps
without Pose Information

Francesco Amigoni, Simone Gasparini, and Maria Gini

Abstract— Most map building methods employed by mobile of the measurement operations performed by laser range
robots are based on the assumption that an estimate of robot scanners, which we calicans without using any position
poses can be obtained from odometry readings or from obsem  jnormation but relying only on geometric information ineth
landmarks or other robots. In this paper we propose methods N . .
to build a global geometric map by integrating scans colle&d scan§. Our approach is similar in spirit tq early \_/vo_rk by
by laser range scanners without using any knowledge about Chatila and Laumond [2] who used geometric descriptions of
the robots poses. We consider scans that are collections ofenvironments. The advantage of using geometric desaniptio
line segments. Our approach increases the flexibility in dat over the more common grid-based representations is that lin
collection, since robots do not need to see each other du”ngsegments can be represented with few numbers and produce

mapping, and data can be collected by multiple robots or a that ier t thy di df |
single robot in one or multiple sessions. Experimental redts maps that ar€ easier {o use, as recently discussed for examp

show the effectiveness of our approach in different types ohdoor 1N [3]. Line segments are also easy to extract automatically
environments. from range data.

Index Terms— Map building, multirobot systems, scan match- One might Wor_ld(_er why We dF’ not use 0dometry, ConSiqer'
ing, map merging, laser range scanners. ing that odometric information is often available. The nmajo
reason is that we want to use multiple robots to build maps
and we want to be able to interrupt the mapping process
and resume it at a later time without having to reset the

Several methods for allowing mobile robots to build mapsitial poses of the robots (this provides a solution to tbe s
of unknown environments have been proposed. To buildcalled “kidnapped robot” problem [4]). In addition, we are
map, a robot incrementally integrates newly acquired sensoterested in building maps with miniature robots, such as
data within previously collected information using knodde the robots described in [5], where no odometry is available.
about its own pose or the path it followed since the last int&ven if odometry can be replaced in part by sensing (see,
gration. Odometry and kinematic models of motion are uséadr instance, [6]), we believe it is important to understand
to estimate the robot pose (i.e., its position and oriemti the implications of not having odometry (which is often
Different types of sensors (sonars, laser range scanneds, anreliable) and to explore what are acceptable bounds on the
panoramic cameras) have been used to collect informati@mor on the initial pose of the robots.
about the environment. Laser range scanners have becomia the following, we callscan a collection of line seg-
the sensor of choice because of their accuracy and witkents obtained, as explained later in Section III-D, from th
availability. points returned by a 2D laser range scanner. Line segments

In the last few years, as detailed in the extensive survey bBpproximate the points returned by laser range scanneng Mo
Thrun [1], most of the methods developed for mapping hayeecisely, a line segment is represented by its end points
been based on probabilistic techniques. The methods haveddrtremes)(z1,y1) and (z2,y2) in the reference frame of
common the fact they use a Bayes filter to recursively computee map. We callpartial map the result of the integration
the posterior probability over robot poses and maps, gikien tof two scans, of a scan and a partial map, or of two partial
previous sensor measurements and motion commands. Taps. Thus, in the terminology used in this paper, a scan
methods differ in the assumptions they make and in how a special case of a partial map. Both scans and partial
they compute the posterior probability. Some methods dperanaps are collection of line segments. The difference is that
online, others require multiple passes through the datasandwe assume the line segments in a scan are ordered (clockwise
are used offline. or counterclockwise), while they are not in a partial map.

The approach we present in this paper differs from tHeange data can be collected by a single or different robags. W
methods mentioned above in the sense that we do not ass@ssume that the robots move indoor oflasurface and that
any knowledge of robot pose and we use exclusively rangells and vertical objects are at the height of the laser.d9¢an
data to construct a bidimensional geometric map composedadifier assumption is made about the environment to be mapped:
line segments. In particular, we show how to build a globéthe environment is supposed to be unknown and with no
map of an environment by merging the post-processed res@tsund-truth maps available. Experiments demonstratetira

method works both in regular and in scattered environments.

Francesco Amigoni and Simone Gasparini are with the Dipario di This paper presents two main contributions. The first is a
Elettronica e Informazione of the Politecnico di Milano,|dfio, Italy. Maria

Gini is with the Department of Computer Science and Engingeof the method forintegrating tWQ partial mT?lpS(and, in particular,_
University of Minnesota, Minneapolis, USA. two scans) relying exclusively on their geometry. We coesid

I. INTRODUCTION
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the angles between pairs of line segments in the maps as a data structures storing grids, points, or line segmenigsceS

of “geometric landmarks” [7] on which our matching procesgrid-based maps require high-dimensional representatidth

is based: the idea is to match angles of the two partial map®usands of numbers, segment-based maps have beenyecentl
that are similar. This method is robust to large displacamermdvocated to reduce dimensionality [3].

between the partial maps, provided that the maps have armMultirobot mapping has attracted attention in recent years
overlap containing at least an angle representing the sabezause of the robustness of exploring in parallel with iplelt
portion of the environment. The method integrates two phrtirobots and of the potential savings in the time needed to

maps,S; and.Sy, into a mapS; 2 in three major steps: map large areas. A key challenge in multirobot mapping
1) find the possible transformatiors S> on Sy; is merging the maps produced by independent robots. The
2) evaluate the transformatiorts identify the best trans- Mmethods proposed in the literature to addressiap merging
formation? of Sy on S;; problem have been mostly based on building robot centric
3) apply the best transformatianto S, (obtainingS) and ™Maps and merging them using the relative positions of the
fuse the line segmentd S; and S} to obtain S, o. robots, which must be known.

When S; and S, are two scans, the first two steps above are ON€ Way of doing this is to extend SLAM (Simultaneous
known in literature ascan matching Logahzatlcl).n a_nd Maphpmg) or CML (Concurrent :\/_Iapbplng
The second main contribution of this paper is the propos%\T_ Localization) techniques [8], [9], [10] to multirobots

of three methods fomap mergingthat integrate asequence AM and _CML techniques_ are widely employed in the
gontext of single robot mapping and refer to the problem of

S1,S59,...8, of artial maps. The sequence defines the ™. " . . .
Lo n P P a ilaundlng a map and, at the same time, estimating the pose

order in which the partial maps must be integrated; namely £ th bot. Si d . sy 111
has to be integrated with,, that in turn has to be integrated0 the ro c_>t. >INce o ometric measurements are noisy [11],
ropot localization cannot rely only on dead-reckoning, and

with S3, and so on. We reduce the merging of a sequence 8P - X . . .
partial maps to the iterated integration of two partial maps probabilistic machinery is employed to localize the robmot i

Our approach for scan matching and map merging withome map that is _belpg constructeq. A f?‘m"y of approaches
pose information has the advantage of being independemt frfi‘?loIOtS Kalman filtering [12], [13] in an mcremen}gl process
how the data have been collected. It is indifferent if thenscal &t estimates r_obot pose and landmarks positions in the
are collected during a single session or multiple sessioys, map. This solution requires a large computaﬂo_ngl effort as
multiple robots or a single robot. Robots can be added g}e number of features in the map grows and it is also not

: Il suited to dynamic environments and environments with
removed at any time, and they do not need to know thelfc. So e A .
y y H@stmgmshable landmarks. Another probabilistic aygmh is

own position. For the experiments in this paper we used sc : S i
b b pap %ased on the Expectation-Maximization (EM) algorithm [14]

acquired by a single robot but all the results are applictble . i .
: ; : : . [15], [16], [17] and is usually employed to build grid-based
ltirobots. In th , th iz | : . e
UILTODOLS. T TS case, the mapping process IS cenfz aps. Robot pose is tracked by a multimodal probability

with data collected to a location and assembled in a map. "> ) : .
More precisely, in a multirobot scenario, our method can nsity fu_nctlon V_Vh'Ch copes well with the corr_esponplence
applied at two levels: at the individual robot level, the hoet problem (i.e., having to associate sensor data with fesmre

integrates the sequence of scans acquired by the robot tan(%!]%‘\ T%p) :nd ‘;V'trt' fa|lur?hredc0\r/]ery. 'It;o aIIedVIatel the dc‘?mp“(;?
the global system level, the method integrates, less fretyle ional burden, faster methods have been developed, imgudi

the partial maps built by the robots. particle filters [9] a_nd FastS_LAM [18]. .
The paper is structured as follows. In the next section we Most map merging techniques rely on the assumption that

outline previous work on scan matching and map merging ang robot poses are known. For example, in [8], [14] the pose

compare it with our approach. We present our scan matchif} the robots ',S assume(_j to b_e knowr? at aII_t_|mes; in [16]
method in Section IIl, and we illustrate our map mergin robots don’t know their relative starting positions bath

method in Section IV. Section V covers the experiment ?bOt has to start within sight of the team leader; in [17] the

validation of our contributions. Section VI concludes ttaper. robots must start in known nearby locations; in [19] the tsbo
have to see each other from time to time. In [20] a stationary

robot continuously tracks the motion of another robot which
acquires sensory data from the environment. In [9], particl
Robotic mapping addresses the problem of acquiring spatfiidlers are used for partial map localization. The robotsehiav
models of physical environments through mobile robots [lctively verify their relative poses before the maps aregeer
These spatial models, anaps are typically used for robot and the integration of partial maps is not fully automated.
navigation, for example to plan paths. In order to build B [21] a single robot is used with FastSLAM to generate
map, robots use sensors like sonars, cameras, and laser rangps directly from laser range data. The method aligns a scan
scanners. The range limitations of these sensors force thdhe previous one by computing an occupancy grid map [22].
robots to navigate in the environment while building the mafghe method, which requires a model of the odometry error, is
As a consequence, maps are built incrementally, integrétti@a  robust and converges even in cases where the standard Rao-
newly perceived information within the already availablepn Blackwellized particle filter [23] without odometry corttémn
Usually, this integration exploits the (uncertain) knoude fails to converge.
about robot poses. Maps can be represented topologicallAn exception is the work reported in [24] where map
(e.g., by graph-based data structures) or geometricatly, @& merging is done using a decision theoretic approach. The

II. RELATED WORK
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robots do not need to know their own position, but theinimization, using an initial estimate for the displacere
maps have to be annotated with distinctive features. Thpsovided by odometry. The technique proposed in [33] refines
step is currently done manually. The match is done not withe alignment of scans collected by multiple robots usirgy th
individual scans but with patches madeléfscans takefi.5 m partial Hausdorff distance to compute the best transfaonat
apart, each of them containirzgto 8 distinctive features. This between a new scan and a point map of the previously explored
is an improvement over earlier work [25], where map merginggion. This method also requires an initial estimate of the
was done by correlation of a patch over a partial map. Tip@se of the scans. The method proposed in [34] is similar to
method required the scans to be taken close to each otber approach in that it extracts line segments from lasegegan
(30 cm in the examples shown), and a very good scan matchisganner readings and builds incrementally a global map. It
algorithm, since map merging could not be undone. first determines the relative orientation of the two maps by

The approach we present in this paper is based on buitdbmputing the histogram of the angle differences and then
ing geometric maps, which are represented as collecticedjusts the translation by overlapping the line segmeritgjus
of line segments, from scans, which are also collections lefast square minimization. The method works for linear and
line segments. In the literature, scans are either based static environments and for very small displacements. Our
line segments or on raw sensor daBcan matchings the method is more general and allows for significant displace-
process of calculating the translation and rotation of aad0oa ments between two partial maps, provided that they have at
maximize its overlap with a reference scan. least a corresponding angle representing the same portion o

Lu and Milios [26], [27] introduced the idea of consistenthe environment.
pose registration, where scans from a laser range scatkeer ta There have been a few attempts to match scans indepen-
at different poses are matched using a priori informatioth alently of odometry. For example, [35] proposes to use a
odometry constraints between successive poses. Thethlgoripanoramic range finder to build segment maps. It identifies
does multiple passes through the data, so it is not real-tiniee segments representing walls or other boundaries of the
The algorithm iteratively minimizes an error measure byt firgnvironment and matches the scans taken from different posi
finding a correspondence between points in the two scatiens without relying on any additional source of infornaaiti
and then doing a least square minimization of all the pant-tThis is accomplished by applying a dynamic programming
point distances to determine the best transformation. Aiain algorithm to the vertical lines of the map. The method operat
pose estimate is provided through odometry to avoid ernasiean polygonal or rectilinear environments, but does not work
alignments. The method works very well when the errors imell in scattered environments and it (implicitly) relies o
the initial position are small< 20 cm). small displacements of the robot. In [36], segment maps

Another well-known technique for scan matching is thare matched by establishing a correspondence between their
iterative algorithm of Cox [28] for matching range scansto aeatures. This is reduced to measure shape similarity legtwe
a priori map of line segments. Since it assumes small displagmlylines according to their maximal convex arcs, followia
ments between a scan and the map, the algorithm first findethod originated in computer vision. Although no data are
the correspondence between scan points and line segmentsraported about the displacement of the maps, from the regort
then calculates the translation and rotation that minintiee experiments it can be inferred to be arouhdm.

(square of all) point-to-segment distances. The two steps a In [37], a scan matching algorithm extending geometric
repeated until the process converges. Each iterationn®tuhashing is proposed. The main idea is a signature represen-
a position correction vector and a variance-covarianceimattation of the local region around each point of the scan. The
that evaluates the match. This approach has been extensieaich for the best alignment between two scans is performed
in [29], where line segments are extracted from the previousth a voting system in the Hough space containing all the
scans and used as the reference model for matching, insteigghatures. The candidate alignment is then applied to #ee m

of using ana priori model of the environment, These methodsurement model of the SLAM framework. From the reported
can be applied only to polygonal environments, a limitatioexperimental data, it seems that the system is implicitigeba
that our method tries to overcome. on small displacement between two scans, alout 30 cm.

With straight perpendicular walls, matching can be donkhe scan matching method proposed in [38] does not use
using histograms, as in [30], where the orientation is calegbu information about odometry to compute the alignment betwee
by cross-correlation of the histograms of the angles batwesvo scans. It is based on geometric features of the maps,
the actual and previous scans, and the translation by crogge so-called Complete Line Segment relationships. All the
correlation of the distance histogram. This method is $®Bsi line segments that completely represent real objects in the
to large displacements between the maps and to changegnmironment are singled out and their relative positionsedu
the environment. The improvement proposed in [31] dedis find a correspondence with the Complete Line Segments
with non-perpendicular walls and segment maps, even ifllit stof the old map. The method has been shown to be fast
assumes straight walls and has poor performance in sahtteaad accurate, even if it is not clear how it can deal with
environments. ambiguity and the case of non-occluded but partially vesibl

In [32] line segments are extracted from range points andiae segments (features that go beyond the visibility regio
special “center of gravity” representation is used to descr of the sensor). It also seems that it cannot be extended to
the uncertainty of line segments. Pairs of line segments amelltirobot map building with unknown position of the robpts
matched and the translation is computed by least squaisce it is weakly based on a sorting order of the line segsnent
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to improve search efficiency. Algorithm 2 Find transformations
Input: two scansS; and .S
[1l. M ETHOD FORSCAN INTEGRATION Output: a set of transformation®

In this section, we present our method for integratingt 41 < €mMPty / .
two scans. The method works in the three steps outlined for @ll pairs of line segments; andsy (s1 # s1) in 51
in Section |. Our algorithmNTEGRATE (reported as Algo-

. /
rithm 1) is exclusively based on the geometric information® ~ @dd toA; the angle betwees, and s

and constraints [7] contained in the scans. In particular, w% end for
consider angles between pairs of line segments in the scafis 32 <~ €MPty .
as a sort of “geometric landmarks” on which the matching® for all pairs of line segments; and s, (s> # s5) in 52
process is based. This use of “local” geometric features is do
significantly different from other related works in map biilg 7~ dd t04> the angle betwees, ands;
that use “global” geometric features (e.g., those reptesdny & end for
an histogram of angle differences). 9: T« empty

INTEGRATE integrates two scans into a partial map. Lerg: for all pairs of anglesy; € A; anda; € 4 do

11: if o1 = ap then

call S; and S, the two scans and » the resulting partial
map. Although in the following we discuss, for simplicity,lz:
the integration of two scans, all the methods are applicable
the integration of two partial maps. In the algorithms belowt:
two points are considered to coincide when they are clos&f €nd for

than ROINTDISTANCETOLERANCE (in our experiments we

set this parameter td5 mm) and two angles are considered

equal when their values differ of less tharN@LEDIFFER- an angle inAS to correspond to an equal angle itf. This
ENCETOLERANCE (in our experiments we set this parametesimounts to change the step 3 (respectively, 7) of Algorithm 2

add toT the rototranslation that superimposes
to oy
end if

to 0.2rad). The modified step adds an angle o (A,) only when s;
and s} (s2 ands}) are consecutive. The number of possible
Algorithm 1 INTEGRATE transformations found by this method @(n;n2). We note
Input: two scansS; and S, t_hat finding thg setsl§ a_ndAg is greatly facilit.at.ed when the
Output: a mapsS » line segments irb; and in.S, are ordered. This is usually the

1: T «— all transformations oS, on S; > see Algorithm 2 Case when scans are acquired with laser range scanness, sinc
2 T best transformation ifi” > see Algorithm 4 the points re_turned by the sensor are ordered countgrclsek_w
3: 5, « fusion of S; and S} > see Algorithm 5 and it is straightforward to maintain the same order in the [i
segments that approximate the points.

Although this heuristic seems to perform well in indoor en-
vironments where consecutive walls are usually perpettaticu
A. Find Transformations the errors introduced by the sensor (for example due tourreg

This step, given the scary and S», first finds the angles lar reflection patterns) and by the algorithm that approxésa

between the line segmentssh and between the line segment@omts with line segments may alter the representationexdeh

in S, and, second, finds the possible transformations (namé¥pdles. Hence, the angles between consecutive line segment
the rotations and translations) that superimpose at lest §Ometimes do not constitute a good model of the environment

angleas of Sy to an equal angle; of S;. We use the angles angles.
between pairs of line segments as geometric landmarks and wéo improve the performance of this heuristic, we can con-
try to match equal angles in the two scans. The pseudo-cod&ifier angles between consecutive line segments even waen th
reported as Algorithm 2. Finding the possible transforovai line segments do not have a common extreme point (this could
is a difficult combinatorial problem since in principle, tvitut e done only if the line segments of the scans are ordered).
any information about the relative poses of the two scamseth Moreover, consecutive line segments can be considered to
areO(n2n2) possible transformations, whesg andn are the form a significant angle only if they are longer than a fractio
numbers of line segments i andS,, respectively. We have (specified by the parameteESMENTLENGTHPERCENTAGE
therefore devised three heuristics for reducing this cexipl Set to an average value 2 in our experiments) of the longest
and finding a set of (hopefully) significant transformationne segment in the scan. The implicit assumption is that
between two scans. They are described in the following. long line segments are more reliable than short line segsment
1) Consider Angles between Consecutive Line Segment§lifepresenting the environment. Although this improvetnen
a Scan: In each scan, we select the angles between twéyes good results with scans, it is not easily applicable to
consecutive line segments; ldt and A5 be the sets of such partial maps in which an order on the line segments is often
angles forS; and S,, respectively. Two line segments aréhard to define.
consecutive when they have an extreme point in common.2) Consider Angles between Randomly Selected Line Seg-
Then, we find the set of all the transformations that makeents in a Scantn each scan, we examine a number of angles
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between pairs of line segments selected randomly. We aasighlgorithm 3 Find transformations based on angles between
higher probability to be selected to longer line segmeiges pairs of randomly selected line segments

they provide more precise information about the environimen  Input: two scansS; and S

Let AT and A7 be the sets of the selected angles $grand Output: a set of transformation®

Ss, respectively. We find the set of all the transformations thai: T« empty

bring an angle inA; to correspond to an equal angle #ff.  2: for k=1,2,...,K do

The number of transformations generated by this method is: for i=1,2,...,N, do > N, has been set t80 - 2"

O(aiaz), wherea; = |A7| anday = | 45| are the number of in our experiments

angles inA] and A%, respectively. 4: pick up randomly two line segments; and
Instead of assigning directly to each line segment the | (s; # s}) from S; that are longer than

probability of being selected (according to its length) arfid SEGMENTDIVISIONFACTOR" times the length of the

selecting a number; (respectivelya,) of pairs, the following longest line segment iS;

approximate and easy-to-implement technique is employed: a; < angle between; ands

Initially only line segments longer thanEBMENTDIVISION-  6: pick up randomly two line segments; and

FACTOR (set t00.5 in our experiments) times the length of the s, (s; # ) from S, that are longer than
longest line segment i¥; (respectively,S;) are considered SEGMENTDIVISIONFACTOR" times the length of the
for selection. All the line segments considered have equal longest line segment iS,

probability of being selected. Then, we proceed to iterdath w 7 ag < angle between, and s

k = 1,2,...,K. In the k-th iteration, we use a threshold s: if ;3 = as then

equal to EGMENTDIVISIONFACTOR” times the length of the o add toT the rototranslation that superimposes
longest line segment i¥; (respectively,S;). Out of the line as to oy

segments longer than this threshold we select one with equal end if

probability. Thus, the parameteeSEMENTDIVISIONFACTOR  11: end for
determines the length of the line segments that are comsiden2: end for
for selection and, implicitly, the probability of seleatioThe
pseudo-code of the algorithm is reported as Algorithm 3sThi

technique tries first to find transformations based on anglasgles inA? and A%. The number of possible transformations
between long line segments; then it progressively considerenerated by the above heuristi€i$p; ¢1p2q2), wherep; and
transformations based on angles between shorter and shaytere the number of line segments in the principal and normal
line segments. The above technique can be further improwicections of the histogram of sc&f).

by stopping the generation of transformations when a “good

enough” transformation is found. (The evaluation of thelgu.

ity of a transformation is discussed in Section 11I-B.)

3) Consider Angles between Perpendicular Line Segme Histogram
in a Scan: In each scan, we select only angles betwe 600
perpendicular line segments. This amounts to change ste 500

(respectively, 7) of Algorithm 2. The modified step adds
angle to A; (A42) only whens; and s} (s2 and s)) are
perpendicular. This heuristic is particularly convenidat
indoor environments, where the presence of regular w

Value (cm)
w
8

usually involves perpendicular line segments. To make t 100 4

heuristic more efficient, we used histograms. Ttgtogram o

of S; (and, in similar way, that ofS;) has nslots buckets. 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Each bucketl; (: = 0,1,...,nslots— 1) contains the line Element #

segments with orientation comprised betweeni/nslotsand

7 x (14 1)/nslots measured with respect to a given referen
axis. To each elemert; of the histogram is associated a value
calculated as the sum of the lengths of the line segments.in
The principal direction of an histogram is the element with
maximum value. Theormal directionof an histogram is the )
element that isr/2rad away from the principal direction. In B. Evaluate Transformations

Fig. 1, the histogram of a scan taken in an indoor environmentEvery transformation found in the previous step needs to
is shown (withnslots = 18). The principal direction is the be evaluated in order to identify the best one. To determine
elementLy and the normal direction is the elemeh§. Let the goodness of a transformationwe transformS, on Sy

Al and A} be the sets of angles formed by a line segme(ih the reference frame ob;) according tot¢ (obtaining

in the principal direction and by a line segment in the norméal}), then we calculate the approximate length of the line
direction of the histograms of; and S,, respectively. The segments of5; that correspond to (namely, match with) line
set of possible transformations is then found comparing teegments of5s. Thetransformation valués the length of the

1: The histogram of a scan
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corresponding line segments that the transformation mesiu Teeee..

More precisely, the value of a transformation is the sum bf al "‘~-..__

the matching values calculated for every pair of line segmen o IR TN
s1 € 81 andsh € Si. The matching valuebetween two line
segments; ands?, is calculated as follows. We projeg on
the line supporting; thus obtaining a projected line segment
sgp and then we compute the lengthof the common part of

1mm

-
Se

(a) penalization =.9150

1mm
51 andsbh,; we do the same but projecting on s, obtaining S
l2. The matching value of; ands} is calculated as the average P "'""-----.-..___*\\
of I; andly. Whens; and sb do not intersect, the matching — e
value is multiplied by0'95d(51,s§)/POINTDISTANCETOLERANCE to (b) penalization =0.9735

penalize the match between line segments that are far away. Different values for the penalization for the pair of line
Note that0.95 is an empirical constant whose value hasegments shown

been determined during experimental activitiéés;, sb) is
the distance between two line segments, calculated asin [Algorithm 4 Find the best transformation

Input: two scansS; and.S,, and a set of transformations

d(s1, s2) = min(max(dist(sy, star{sz)), dist(s1, endsz2))), T
max(dist(s, star(s1)), dist(s2,end(s1))))  Output: the best transformatiohin T
where start and end are the extremes of a line segmedt btv <0 > current best transformation value

and dists, p) is the Euclidean distance between pginand 2 for a|t| teTdo _
the line supporting segment (Fig. 2, note thats; € §; 3 Sy < transformS; according tot

and s; € S,). Note that, usually, in computer graphics 4  tv <0 > value of¢
and in computer vision, the distance between two sets df  for all pairs of line segments; € S; ands} € S5 do
points A and B is calculated as theHausdorff distance 6 if s; and s} intersect and both are longer than
H(A,B) = max(h(A,B),h(B,A)), where h(A,B) = SEGMENTLENG_THREFUSEthen _
max,e 4 (mingeg(||a — b||)), and||-|| is the Euclidean dis- 7: _ consider the next transformation > next
tance. One can show thal(s,,sy) < H(s;,ss) for any iteration of the outefor
segments; and s,. The role of penalization for two pairs 8 end if
of line segments is illustrated in Fig. 3, where line segment?: if d(s1,s5)/POINTDISTANCETOLERANCE >
belonging to different scans are represented by continuous SEGMENTDISTANCETHRESHOLD then
and dotted lines, respectively. When two line segments havel0: consider the next pair of line segmentsiext
positive matching value they (supposedly) represent theesa  iteration of the inneifor
part of the environment. 11 end if

12: sh, < projection of s5 on line supportings:;

s1p < projection ofs; on line supportings},
13: l; < length of common part of; and sgp; ly —
length of common part of} and sy,

14: mv — (Iy +12)/2 > matching value

15: if s; andsh do not intersecthen

16: Mo — mu * 0.95d(51,s;)/POINTDISTANCETOLERANCE

_ > penalization
17 end if
18: tv «— tv +mu

2: The distance between; and so is d(s1,s2) =

: o: end for
Q:]T(/m?ax(a, b), max(c, d)), where the marked angles are equaio: if tv > bto then
21: t «— t; btv < tv
Finally, two special cases can appear during the evaluatidf end if
’ 23: end for

of the matching value of; and si. The matching value is , . 7 7
, 4: for all pairs of line segments; € S; ands}, € St do
set to0 when the two line segments are too far away, nhame . 7 .
. ‘ 5: if (s1,-) or (-,s}) already belongs to a matching
when the ratio ofd(sq, s4) to POINTDISTANCETOLERANCE : . 2
) chainC relative tot then
is larger than BGMENTDISTANCETHRESHOLD. SEGMENT- i :
. : 26: add toC' the pair(sy, s5)
DISTANCETHRESHOLD is usually set to5 to obtain good
. o 27: else
experimental results. The transformation is discardedrnwhé : . -
) . : create a new matching chain relativettand add
the two line segments intersect and are longer thae-S . . 7
. to it the pair(s1, s5)
MENTLENGTHREFUSE (usually set t0 cm or 100 cm in our 20: end if
experiments). The pseudo-code of the algorithm is repased 302 end for
Algorithm 4. (Steps 24-30 are explained in the next section—
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The above algorithm evaluates a single transformation by
considering all the pairs of line segments of the two scans m Im
that areO(nin2). A way to limit this computational effort
is to stop the evaluation of a transformatiomhen its value
cannot be larger than the current maximum, namely when the
length of the line segments of; (or S4) whose matching
value has been not yet calculated is less than the difference
between the current value éfand the current maximum.

C. Apply the Best Transformation and Fuse the Scans (a) Matching chain (b) 1st iteration

Once the best transformatiomas been found, the third and
last step of our scan integration method transforms thenseco Im Im
scans; in the reference frame o, according tol, obtaining A A
SE.

Because of calculation, scan, and matching errors the scans
might not align exactly. To produce the output mép, we
first replace each matching chain created in steps 24-30 of
Algorithm 4 with a polyline, and we add the resulting polgs
to the unmatched line segments $f and S%.

A matching chairrelative to transformation for the pair
of scansS; and S} is the setC = {(s1,s5)[s1 € S1 andsh € (c) 2nd iteration (d) 3rd iteration
55 have a positive matching value fof algebraically closed 4: An example of iterative construction of an approximating

under line segment belong-to relation. Specifically, a ima . . . . .
chainC' is sugh that (s ng> c C. then aIFIJ the Iineysegmeg:ntspowlme’ shown in black, for a matching chain, shown with
1,72 ' two levels of gray

s that have a positive matching value (namely, have matche
with) s; or s5 belong to C; i.e.{sq,s) € C and (s, s%) € C.

- . ; :
We explicitly note that, given an eleme, S2>'Eth,e matching 4 eedy version of the above (plain) algorithm in which a line
chainC that contains (that is generated ly), s3) is uniquely - gegmeng in (a pair in)C is considered only once for insertion

identified. It is easy to see that a transformatiayenerates a j, ihe polyline. The greedy method produces approximate

set of (disjoint) matching chains. polylines that are more “clean” than those produced by the

Each matching chain (i.e., each set of pairs of corresp@d|ﬂ|ain method (Fig. 5). Moreover, given a matching chain

line segments) is fused in a single polyline, which thefe greedy version of the algorithm is guaranteed to terrina

replaces the corresponding line segments in the final m‘ﬁﬁ"O(c) iterations, where: is the number of pairs i€, Note

Therefore, the final map is obtained by adding the polylingga; ~strictly speaking, the fusion of the scans presented i
that represent the matched line segments (i.e. the lin€&®YM s section is not part of scan matching., as it is intended

in the matching chains) to the unmatched line segment of i, |iterature. However, we use it iINTEGRATE to reduce the

gnd Sk, The pseudo-code is in Algorithm 5 and an examplé‘ommexity (i.e., the number of line segments) of the résglt
is shown in Fig. 4. map.

We build the polyline that approximates the line segments
in a matching chainC by iteratively building a sequence ) o
of approximating polylines?,, P,, . .. that converges to the D- Analysis of Approximation Errors
polyline P that adequately approximates (and substitutes inin this section, we present an analysis of the approximation
the resulting map) the matching line segmentsCin The errors introduced by the scan integration method described
polyline P, is composed of a single line segment connectirepove. We assume that the points acquired by the laser
the pair of farthest points (extremes of the line segmemts) iange scanner are affected by an errorcoftypically, this
C. Given the polylineP,,_;, call s the line segment in (a value is aroundl cm). This means that the real point in the
pair belonging to)” that is at the maximum distance from itsenvironment lies within a circle centered in the point read
(closest) corresponding line segmenh P, _;. If the distance by the sensor and with radius
d(s, s) is less than the acceptable errasFFONTOLERANCE The points returned by the sensor are approximated with a
(set to 15mm in our experiments), the,_; is the final set of line segments following the approach described iih. [39
approximationP. Otherwises is inserted inP, _; to substitute We operate in two steps:1) the points are grouped into
s ands is connected to the two closest line segment®jn; clusters and ) a polyline is generated to fit the points
to obtain the new polyline>,. in each cluster. In1), we consider the acquired points in
The above algorithm is not guaranteed to terminate with@ounterclockwise order and we group in the same cluster the
a given time bound, because line segmentsCincan be consecutive points whose distance is less than a threshold
considered an unpredictable number of times in building tlfget to20 cm in our experiments) from their successors. 2 (
approximating polyline. For this reason, we implemented we approximate the points in a cluster by recursively bogdi




PROCEEDINGS OF THE IEEE, VOL. 94, NO. 7, PP 1340-1359, 2006 8

a polyline: initially it connects the first and the last point

Algorithm 5 Fusion of two scans the cluster, then the farthest point from the current pogyli

becomes a new endpoint of the polyline; the process corgtinue

until all points in the cluster are within a distange(set to

25 mm) from the polyline. Hence, the line segments in a scan

approximate the points perceived by the laser range scanner

Input: two scansS; andSS, and a set of matching chains
{C} relative to?
Output: the maps; »

: —
; iljé toSiZ]F;Lye unmatched line segments $f and 55 The po_lyline generation presented above re_zsembles thftopf[

3 for all C € {C} do that builds clusters on t.he basis of f_;lngles mstegd of dJe_mn .
4 Py < line segment connecting the pair of farthes Note that these_ polylines apprqx!mate percelvgd points in
points (extremes of line segments)dh the post-processing pf scan acquisition an_d are d|ffememf
. s  line segment in (a pair i)’ that is at maximum the polylines approximating matching chains in the fusién o
distance from the line segmentin P, scans.) . . . .

6 neo0 _ The clustering of points does not mftroduce any approxima-

7. while d(s, 5) > FUSIONTOLERANCE do tion error. The threshold of the clustering algorithm mﬁues. .
g " n’ i1 th.e number of polyhnes that are c_reated but not the pretisio
o P, — P, , after substitutings with s and adding w_|th wh|ch the pomlts are approxmgted by these polylines.
line segments that connegtto the closest line segmentssmce’ In our experiments, the_ maximum range .Of thi laser
in P, sensor has b_een se_t &m and its angular resolution t®°,
10: s — line segment in (a pair in’ that is at two consecutive points at the e_nd of range of the sensor
maximum distance from its closest line segmer P, are separated by a_bom cm (obtained froms m x Sin(lo).)'
11 end while Hence, the clu_sterlng threshotd has been set t@_O cm in
1o add the polylineP, to S » order to keep in the same cluster t\_/vo consecutive points at
13: end for ' _the end of the range. ane the pomt; have be_en s_eparated
in clusters, the generation of the polyline approximating t
points in a cluster introduces, by definition, a maximum
(worst-case) error of.

During scan integration, the fusion (see Section IlI-C) of
the line segments of two scans introduces other approxima-
tion errors. More precisely, given a matching chaif the
maximum (worst-case) distance between a line segment of the
resulting polyline and a line segment belonging to a paif'in
(namely, a line segment of; or S%) is FUSIONTOLERANCE
in the plain version of the fusion algorithm. Our greedy
implementation introduces a larger approximation errat th
has been experimentally evaluated (on a sample of scans from
Section V) to be almost always less théhmm.

Globally, the approximation error introduced by our scan
integration approach is, in th@orst case x + 40 mm, given

that the points returned by the sensor (on which the algosth
(a) Matching chain (b) Polyline with plain work) are affected by an error of.

method
IV. METHODS FORMAP MERGING

The scan integration method discussed in the previous
section produces a maf; = INTEGRATE(S1,S2). The
reference frame ob; 2 coincides with the reference frame
of S1, sincet is a transformation that brings the reference
frame of S, in the reference frame ;. The main advantage
of INTEGRATE is that, since it is not based on information
about the relative position of; and .S, and it works with
collections of line segments, it is applicable indiffetgrip
/:I:' situations in whichS; and S, are scans and to situations in
{ which S; and S, are partial maps. Obviously, in this second

. K case, the partial maps could contain a larger number of line
f}‘q’étﬁgg’“”e with greedy segments and the computational time would be larger.
In this section, we describe three proposed methods

5: A matching chain (in black and gray) and the resultingschematically shown in Fig. 6) for integrating a sequence
polyline (dotted line) S1,8,...8, of n partial maps by repeatedly callingi-

TEGRATE. (These methods have been introduced in [41].)
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S, S, S S, sequences 2, S2.3, - -+, Sn—1.n Of n — 1 partial maps. Then,
S l each partial map of this new sequence is integrated with the
2 successive one to obtain a new sequeficgs, S23.4, ...,

Siza o Sn—2,n—1,n Of n—2 partial maps. The process continues until
a single final magS, 2., is produced.
Si2..n The tree method always integrates partial maps of similar
(a) Sequential method size, since they approximately contain the same number of
s, S, S, S, level 0 line segments. The number of calls WWTEGRATE required
NN K Y by the tree method to integrate a sequence @iartial maps
ST Spin  levell is n(n — 1)/2. Note also that, while it is quite obvious that
N the sequential method can be applied online (i.e., while the
S123 robot is moving), the most natural implementation of thetre
method is offline, since it is not straightforward to devise a
; 4 online algorithm for the tree method that requires constant
12, fovel n time, asn grows, to update the tree (some results about online
(b) Tree method implementation are reported in Section V-B).
1S, S Sh To speed up the tree method we have developed a heuristic
NN NV that, given a sequence of partial maps at any level of the tree
S12 S Snin (let us suppose at levélfor simplicity), attempts to integrate
the partial mapsS; and S;.o; if the integration succeeds
(for example, a success can be experimentally determined by
calculating if the value of the best transformation retdrne
Sion by INTEGRATE is above a threshold), the final resf; o
() Pivot method represents the same map that would have been obtained with
three integrationsS; with S;y; to obtainS; ;+1, S;+1 with
%gi+2 to obtain Si+17i+2, and Si,i+1 with Si+1,i+2 to obtain
Sii+1,i+2- The number of partial maps in the new sequence is
reduced by one unit, becauSg; ;. » substitutes botly; ;; and

Note that our contribution to the solution of the problenyi+1i+2- This heuristic finds its natural applicability when the

of integrating a sequence of partial maps is a step towaf@tial mapsS; andS;., are already the result of a number of
the solution of the more general (and complex) problem iptegrations performed by the tree method and their common

integrating a set of partial maps. Some issues about thisrgbnpart is significant. For example, in the sequence produced at
problem are discussed in Section V-C. the level 3 of the tree technique the firstS{ 5 5 4) and the

third (Ss,4,5,6) partial maps have a significant common part,
since approximately half of the two partial maps overlaggsT
A. Sequential Method improves the robustness of the method, since corresponding
The simplest method is theequential methadt operates angles are likely to be found in the two partial maps.
as follows. The first two partial maps in the sequence areA problem with the tree method is caused by the presence
integrated, the obtained map then is grown by sequentiaflj “spurious” line segments in the integrated maps, namely
integrating the third partial map, and so on. HenSg,is line segments that correspond to the same part of the real
integrated with S, to obtain S; 2, S1 2 is integrated with environment but that are not fused together with the proeedu
S; to obtain S; 3, and so on. Eventually, the final mapof Section IlI-C, for example because their alignment is
S1,2,...n is constructed. In order to integratepartial maps, imprecise (Fig. 7). This problem is exacerbated in the tree
the sequential method requires— 1 calls to INTEGRATE. A method since the same parts of the partial maps are repgated|
problem with the sequential method is that, as the procdesed together and errors accumulate.
goes ONn,INTEGRATE is applied to a partial map that grows
Iarger f’;\nd Iarger. (!t contains more and more Ilng segmenté)'. Pivot Method
This will cause difficulties in the integration ; with large

i, sinceS; could match with different parts of the larger map To avoid the problems of the sequential and tree methods,
we devised th@ivot methodhat combines the best features of

the two above methods. This method starts as the tree method
and constructs a sequensgs, S2.3, ..., Sp—1,, Of n — 1
B. Tree Method partial maps starting from the initial sequence. At thisnpoi

To overcome the above problem, the integration of a smale note thatS, is part of bothS; 2 and S; 3 and that the
partial map with a large partial map should be avoided. Thistransformatioré; » used to integrateS; and S, provides the
the idea underlying theee methodwhich works as follows. position and orientation of the reference frame%%fin the
Each partial map of the initial sequence is integrated witieference frame ob; ». It is therefore possible to transform
the successive partial map of the sequence to obtain a ngy according tof; » and fuse the line segments of the partial

~

S

S

123

6: A schematic representation of the three map mergi
methods

S1,2,..i—1-
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angle (°, in our case) sweepint80°. The result of a sensing

Im ‘A operation is thus a set of points expressed in polar cockbna
L with the origin of the coordinate frame in the sensor itself.
¢ Y These points are approximated by line segments, as dedcribe

in Section III-D.
) For the experiments of Sections V-A and V-B we ac-
f quired 31 scans (Table 1). The scans have been acquired
in different environments (forming a loop aboddm long)
by driving the robot manually and without recording any
— odometric information. We started from a laboratory, a very
- scattered environment, then we crossed a narrow hallwdy wit
rectilinear walls to enter a department hall, a large open
7: Spurious line segments that have not been fused togeteace with long perpendicular walls, and finally we closed
in the final map the loop re-entering the laboratory (see the dashed path in
Fig. 12). The experiments have been designed to include a
B variety of cases and to stress the algorithms we propose. The
mapssS; > and Séfg to obtainS; 2 3. In a similar way,S1 2,34 correctness of the integrations has been determined bgllyisu
can be obtained frons; 2 3 andSs 4 by applying to the latter evaluating the maps with respect to the real environment.
the transformations;, 3 andt; » and fusing the line segmentsThe displacements (both translational and rotationakyveen

of S123 ande,j;f“’Q. Iterating this process, from the sequenctie scans are significant. The translational displacemenats
S19, 823, ..., Sn_1., the final mapS; o, is obtained. between34cm and 2.8 m, with an average ofl..2m. The

The pivot method integrates partial maps of the same siz@tational displacements are betwee035 rad and1.73 rad,
like the tree method, and requires— 1 calls toINTEGRATE, With an average 06.33rad. (These values have been derived
like the sequential method. (In addition it requires— 2 from the automated matching of the scans performed by our
executions of the not-so-expensive step 3NfEGRATE, see Method.) These displacement values are much more than those

Algorithm 1.) Integrating the line segments of two scansyontsually reported in literature. We note that large dispiaeets
once, the pivot method reduces the problem of spurious liAow the mapping process to quickly cover the environments
segments. The pivot method is also naturally implementatyiéth few steps.

in an online system. The problem of spurious line segments! he programs have been coded in ANSI C++ employing the
is reduced but not completely eliminated by the pivot methodEDA libraries4.2 and have been run onleGHz Pentium Il

a way to further reduce this problem is to fuse 1at, and Processor with Linux SuS8.0. We stress tha}t our approach
S;éz’ but S, and Sél,e,' where, 5 is the composition of is independent of the robots used to acquire the scan data,

t1.2 andis 3. The pseudo-code of the algorithm for this pivof’IS shown in Section V'Qi thus can be naturally applied in a
method is reported as Algorithm 6. multirobot context, provided that the scans are taken at the
same height.

Algorithm 6 Pivot method for map merging

Input: a sequence of scans;, 5y,..., 5, For every pair of consecutive scans acquired in our labo-
Output: a final mapsi 2,....n B ratory, we tested the basic method for scan integration and
L 51,2 < INTEGRATE(S1, S) and storefs » the three heuristics, sometimes modifying the values of the
2: for i = 3,4,...,ndo B parameters. EGMENTLENGTHPERCENTAGE ranged from2
8 Si-1i < INTEGRATE(Sj-1,5;) and storef; i ; (for scans with long line segments) tH (for scans with

A. Scan Integration Experiments

4 lig < COMPOSEy,i—y andt;—1; short line segments).ESMENTLENGTHREFUSEranged from
5. S;"" « transforms; according tof; ; 80 cm (for scans with short line segments)it¢0 cm (for scans
6: S1,2,....; < apply the fusion procedure (Algorithm 5)with long line segments).
to Si2,..i-1 ande“‘ In general, our experimental results demonstrate that the
7: end for proposed scan integration method performs well (Tabléou),

not all the pairs can be integrate2R pairs of scans out afl
possible pairs §s; is integrated withS;) have been correctly
matched with at least one of the heuristics presented in Sec-
tion Il (last row of Table II). Unsurprisingly, the histogm-
The experimental validation of our methods has been dobased heuristic worked well with scans containing long and
both with data collected in our laboratory (Sections V-A 8Ad perpendicular line segments, like those taken in the hgllwa
B) and with data publicly available on the Internet (Sectibn and in the hall. The heuristic that considers consecutive li
C). In our laboratory, we used a SICK LM&)0 laser range segments seems to work well in all three kinds of environment
scanner (mounted on a Robuter mobile platform at a heighten if sometimes it needs some parameter adjustments.
of approximatively50 cm) to acquire a sequence of distance Table Il shows the results obtained by integrating three
measurements along directions separated by a programmaitieresting pairs of scans (see also Fig. 8).and S5 were

V. EXPERIMENTAL RESULTS
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I: Scans acquired in our laboratory (line segment lengthsirammm)

Environment Scans Avg number of line segments  Avg lengthingf segments
Laboratory  S7 — So, S30 — S31 39.5 212.3
Hallway S10 — Sa24 19.3 366.3
Hall Sas — Sa9 15.6 607.0
Total S1 — S31 25.9 350.4

II: Scan integration results over tt3d¢ scans acquired in our laboratory

Heuristic used Number (%) Successes  Number (%) Failures
All transformations 13 (41.9%) 18 (58.1%)
Consecutive line segments 21 (67.7%) 10 (32.3%)
Random line segments 10 (32.2%) 21 (67.8%)
Histogram 9 (29%) 22 (71%)
Using the best heuristic 28 (90%) 3 (10%)
Im \
L )
~ - AN o X _~ A
, g [ 2 > N\
3 \
Lo - / SN
(a) ScanSy (b) ScanSs (c) Final mapSy,5
_ _ 1m B !
1m |
1m I -
f
M | —
/
o -
o |
J — , T
(d) ScanSis (e) ScanSig (f) Final map S1s,19

- —// \ } \\
2 \ 2 /\\ | 3 |

>

’

(g) ScanSas (h) ScanSss (i) Final mapSas 26
8: Pairs of scans and resulting final maps (the arrows shaskgments corresponding to the same object in the envirthme

taken inside the laboratory: they contain a large number efaluating only two transformations. On the other hand, the
short line segments since the environment is highly seatterevaluation of all the possible transformations is infelesib
The heuristic that works better is that based on consecutfever 40,000 matches to evaluate!f,s and S19 were taken
line segments: it was able to find a good transformatia@iong the hallway: they contain fewer line segments than the
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previous scans and are characterized by long rectilinear li
segments. Even in this case, evaluating all the transfoomsat
is expensive, while the consecutive line segments hearisti
performs well.So5 andSsg were taken in the hall: they contain Im
only few line segments since the environment is charaeeriz
by long rectilinear and perpendicular walls. All the hetics

perform well in this case because, starting from a small i iy o1
number of line segments, there are only few transformations &/ L
that are easy evaluated. ST

For scan pairs$; —S; and.S; — Ss our method was not able \ oo L
to find the correct transformation. As shown in Fig. 9, these / 1
scans contain many short line segments representing rechtte \\ N
small objects (chairs, tables, robots, and boxes). It isoatm 3 -
impossible, even for a human being, to find the correct match /

between these scans without any prior information about the y
relative positions. Similar problems emerged in the hatlc F '
example, Fig. 10 shows scafs; and S.g, where the second
one has been taken after rotating the robot of abiift
degrees. Since the environment is large and has only fek2: The final map obtained with the tree method (with the
objects that can be used as reference, a drastic change ofd@ghed path followed by the robot)

field of view eliminates any common reference between scans,

thus automatic matching is impossible. IV: Computing time (ins) for online map merging
We now discuss the role of the parameters that influence Newly acquired scan _Sequential _Tree  Pivot

the performance of our scan integration methodINTDIs- Sy 0.3 03 03

TANCETOLERANCE affects the matching value of two line gg 8:2 g:g 8:2

segments and the corresponding transformation. In the same S, 0.8 65 0.7

way, large values for SGMENTDISTANCETHRESHOLD make Sg 0.7 14.3 0.7

line segments that do not represent the same object in the S 0.7 266 0.7

environment to match; small values reduce the number of

matching line segments thus making the method more semsitiv _ )

to measurement errors. Large values ofGA EDIFFERENCE Fig. 12 shows the final map (composed @9 line seg-
TOLERANCE facilitate the search of the best transformatiof1€Nts) obtained with the tree method. We applied the standar

by allowing many possible transformations to be considerdff€€ method until leveB of the tree, then we applied the
but their evaluation requires more time. heuristic presented in Section IV-B to speed up the process.

As we went down in the tree, the size of the maps grew larger
and larger and the execution ofTEGRATE slowed down. For

B. Map Merging Experiments example, the integration of two partial maps (composethsf
The sequence of scans we considered for validating our nifjfl 103 line segments) at level of the tree requires2.8s.
merging methods is composed 2§ scansSs, S, ..., Ss1. Furthermore, as already noted, when we integrate largstsiz

We have excluded the three initial scans from the sequerf8@Ps with many redundant spurious line segments that rep-
acquired in our laboratory because, as discussed in Seétiofesent the same part of the environment, the resulting maps
A, they could not be integrated. Moreover, in order to clos¥® noisier because of the error introduced when attempting
the loop and complete the experiments, scans figynto 1O integrate maps with many overlapping line segments.
Saq (Fig. 10) were manually integrated. In the following, we Fig. 13 shows the final maps obtained with the pivot method.
discuss the integration of this sequence of scans doneeofflifn€ map on the left is composed ¢41 line segments and
to test and compare all the three methods presented abovéas been built by fusing the partial map_ ; with Sf;fl

Fig. 11 shows the final map (composed 238 line seg- While the map on the right is composed 338 line segments
ments) obtained with the sequential method. The sequenfid has been built by the optimized method that fuses the
method could not integrate all the scans in order to close thertial mapS;_; with S;\;"**'. The second map presents
loop: the method suddenly failed when we tried to integrafewer spurious line segments and appears more “clean”.
Sa3. It is evident thatSy3 has only a few short line segments We have preliminary tested the performance of the online
in common with the rest of the map. Furthermore, as alreadygplementation of the map merging methods, considering the
discussed, when the global map grows during the sequensiab-sequence of scafg, Sy, ..., 59 and the consecutive line
integration, the scan matching becomes computationally vesegment heuristic. Results are shown in Table IV in which the
difficult because the large number of line segments reqairesime needed to integrate a newly acquired scan in the prgviou
high effort for evaluating the possible transformations:. &x- global map is reported. The sequential and the pivot methods
ample, the integration of;9 (composed o£8 line segments) are the best options for online implementation.
with S3 4,18 (composed o247 line segments) takes17s. Given the nature of our approach, there is aopriori
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lll: Interesting scan integration examples (times aresin

Scans Sa Ss S1s S19 Sos5 Sa6
# of line segments 47 36 24 24 10 12
Time # tried | Time # tried | Time # tried
All transformations 936 41,260 32 3,096 0.38 231
Consecutive line segments 1.25 2 0.73 27 0.13 4
Random line segments | 7.69 ~20,000| 2.51 ~20,000| 0.78 ~20,000
Histogram 3.29 73 1.97 192 0.15 32
guarantee that the final map is consistent. Actually, this is
a critical issue for all map merging methods. In our case, the
consistency of the final map can be ensured by the user who
can validate each integration performed by the method. Aemor
flexible solution is to let the user set a threshold for theigal
of the best transformation IINTEGRATE. An integration is
= considered to be valid only when its value (i.e., the value of
m / : ,_,\ its associated best transformation, see Section IlI-Bphmva
- RK/_EJA, | the threshold. By setting the values of the threshold smalle

Door that has been closed after
the passage of the robot

. . ti—1,i
(a) Fusion ofS; 1 ; with ;"

S
Im i\’f;"/" kl
T€ -
g
\ ,E\/; "'T/
( - }

(b) Fusion ofS,_; ; with S/

13: The final maps obtained with the pivot method

larger, the user can decide to be more or less confident with
the results produced by our method.

C. Further Experimental Results

To further validate our approach and to show that it
works also with different data, we applied it to the stanford
gatesl data set available in the Robotics Data Set Reppsitor
(Radish) [42] (thanks to Brian Gerkey for providing these
data). This data set is #-minute tour through the first floor
of the Stanford’s Gates Computer Science Building. The trobo
used to collect the data is a Pioneer 2DX with a forward-
pointing SICK LMS 200. The laser was running at high speed
(75 Hz scans) in thel0 mm, 1° mode. The data set includes
both laser data and odometry data. We considered only laser
data (aboutl15,000 laser scans!). For each scan of the data
set, we approximate the points acquired by the laser range
scanner by line segments, as described in Section IlI-D. We
call scansS,, wherez is the time (in seconds) at which a
scan has been acquired, according to the timestamps rdporte
in the data set. To obtain good experimental results, we set
some parameters to values different from those used in the
previous sections: @NTDISTANCETOLERANCE has been set
to 10 mm and SEGMENTDISTANCETHRESHOLDtO 10.

The first set of experiments we performed with the stanford-
gatesl data set is devoted to show that our method can always
find the correct integration between two scans, providetl tha
the two scans are taken close enough. For example, $gans
andSsq0 (takend s apart) are not correctly integrated with our
method but, when considering alsg,o, our method correctly
integratesSs,s with S54¢ and the result of this integration with
Ssoo (Fig. 14). The same happens for scafiss, S31s, and
S320 (Flg 15)

To corroborate the results of Table Il and to compare the
heuristics for scan integration of Section IlI-A in a differt
environment, we applied them & pairs of scans (the scans
of each pair has been taken4at from each other) randomly
selected from the stanford-gatesl data set. Results avgedp
in Table V. An interesting future research direction couéd b
the automatic identification, given an environment, of tiestb
heuristic.
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V: Scan integration results ovép pairs of scans of the stanford-gatesl data set

Heuristic used Number (%) Successes  Number (%) Failures
All transformations 13 (86.7%) 2 (13.3%)
Consecutive line segments 8 (53.3%) 7 (46.7%)
Random line segments 2 (13.3%) 13 (86.7%)
Histogram 7 (46.7%) 8 (53.3%)
Using the best heuristic 14 (93.3%) 1 (0.7%)

15
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(d) Resulting map

14: Scans and the map resulting from their integration
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m ] | ' |

(d) Resulting map
15: Scans and the map resulting from their integration

We also analyzed the robustness of our method with re-
spect to variations of the parameter values. To this end,
we considered three randomly selected pairs of scans of
stanford-gatesl data set and we applied our scan integratio
method (with the consecutive line segment heuristic) vary-
ing the values of BINTDISTANCETOLERANCE, ANGLED-
IFFERENCETOLERANCE, and GMENTDISTANCETHRESH
oLD. The method has been able to correctly integrate the
pairs when the above parameters had values wighimm
and 13 mm for POINTDISTANCETOLERANCE, 0.16rad and
1.53 rad for ANGLEDIFFERENCETOLERANCE, and8 and131
for SEGMENTDISTANCETHRESHOLD.

The last experiment we performed with the stanford-gatesl
data set is a simulation of a realistic multirobot settinge W
assumed that four mobile robots had individually acquirad f
local maps of the environment (Fig. 16). According to the-two
level multirobot scenario depicted in Section |, we buikksh
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16: Local maps that could have been acquired by four diftereinots

local maps, called.,, Lo, L3, and L4, by integrating four merging a sequence of partial maps in order to build a global
sequences of0 scans (taken ats from each other). Each map. Our method works without any information about the
local mapL; has two scans in common with the local mapeelative poses of the partial maps but relies exclusively on
L;_; and L;;1 (when they exist). The total length of the linetheir geometric features. The advantage of using geometric
segments in each local map is ab8biin. Our scan integration features is that the representation based on line segnments i
method has been able to integrate correctly the pairs of losgry compact and the maps produced are easy to use. This
maps, as shown in Fig. 17. The time required to integraie the major aspect which distinguishes our approach from
(with the heuristic that considers consecutive line sedg)enother robot mapping methods reported in the literature. The
two local maps is abow20s. Note that we tried to integrate methods presented in this paper provide an elegant soligtion
all the pairs of local maps. The correct matches have a b#st problem of multirobot mapping since they are indepehden
transformation value of about) m, while the wrong matches from where and by which robot the partial maps have been
have a best transformation value of abéuh. For example, acquired. Experimental results validate the effectiveruéghe

the best transformation value betweép and L, is 14.8m, approach for indoor environments.

while the best transformation value betweén and L, is In future research we plan on generalizing these methods
4.3 m. following the preliminary results of Section V-C, to cases
where the order in which the partial maps have to be integrate

VI. CONCLUSIONS ANDFUTURE WORK is not known. This would happen, for instance, when maps are

In this paper we have presented an approach for integratergated by different robots since we cannot assume the order
pairs of partial maps composed of line segments and fiorwhich the merging will be done is the same as the order in
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17: The result of the integration of local maps

which they have been acquired. Note that the problem is notiaria Gini by NSF under grants EIA-0224363 and EIA-

severe as it might appear unless the number of robots is véB24864.
large. We will also explore how adding positional infornoati
will affect the performance of the methods and examine how

sensitive they are to pose errors.

ACKNOWLEDGMENTS

The authors would like to thank Jean-Claude Latombe fol2]
his generous hospitality at Stanford University where this

REFERENCES

17

[1] S. Thrun, “Robotic mapping: A survey,” iExploring Atrtificial Intelli-

gence in the New MilleniupG. Lakemeyer and B. Nebel, Eds. Morgan

Kaufmann, 2003.

and Automation1985.

R. Chatila and J.-. Laumond, “Position referencing andsistent world
modeling for mobile robots,” ifProc. of the IEEE Int'l Conf. on Robotics

research was started, Héctor Gonzales-Baios for gha@i# [3] E. Brunskill and N. Roy, “SLAM using incremental probiisiic PCA

programs and expertise with collecting laser range scam, dat

Brian Gerkey for providing the Stanford data set, Paolo Maz: , Robotics and Automatior2005.

zoni and Emanuele Ziglioli for the initial implementatiof o

the fusion algorithm, Daniele Menotti for contributionsgor 1992.

analysis, and lgor Giussani for some experimental result§l
Francesco Amigoni was partially supported by a Fulbright
fellowship and by “Progetto Giovani Ricercatori” 1999 gran

no. 5, pp. 713-727, Oct. 2002.

and dimensionality reduction,” ifProc. of the IEEE Intl Conf. on

[4] S. Engelson and D. McDermott, “Error correction in mebibbot map
learning,” inProc. of the IEEE Int'| Conf. on Robotics and Automation

P. E. Rybski, S. A. Stoeter, M. Gini, D. F. Hougen, and N.- Pa
panikolopoulos, “Performance of a distributed robotic tegs using
shared communications channeliEEE T ROBOTIC AUTOMvol. 22,



PROCEEDINGS OF THE IEEE, VOL. 94, NO. 7, PP 1340-1359, 2006

(6]

(7]
(8]

El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

P. E. Rybski, F. Zacharias, J.-F. Lett, O. Masoud, M. Gand N. Pa-
panikolopoulos, “Using visual features to build topoladianaps of
indoor environments,” ifProc. of the IEEE Int'l Conf. on Robotics and
Automation 2003.

W. Grimson, Object recognition by computer: the role of geometric[31]
constraints The MIT Press, 1990.

W. Burgard, M. Moors, and F. Schneider, “Collaborativepleration
of unknown environments with teams of mobile robots,” Advances
in Plan-Based Control of Robotic AgentsSpringer-Verlag, 2002, pp.
52-70. [33]
J. Ko, B. Stewart, D. Fox, and K. Konolige, “A practicaledsion-
theoretic approach to multi-robot mapping and explorgtion Proc. of
the IEEE/RSJ Int'l Conf. on Intelligent Robots and Syste?@93, pp.
3232-3238.

J. Fenwick, P. Newman, and J. Leonard, “Cooperativecaoent
mapping and localization,” ifProc. of the IEEE Int'l Conf. on Robotics
and Automation2002, pp. 1810-1817.

J. Borenstein and L. Feng, “Measurement and correatiosystematic
odometry errors in mobile robotslEEE T ROBOTIC AUTOMvol. 12,
no. 6, pp. 869-880, 1996.

G. Dissanayake, P. Newman, S. Clark, H. Durrant-Whysad
M. Csorba, “A solution to the simultaneous localization anmap
building (SLAM) problem,”IEEE T ROBOTIC AUTOMvol. 17, no. 3,
pp. 229-241, 2001.

J. Guivant and E. M. Nebot, “Optimization of the simulémus local-
ization and map-building algorithm for real-time implertetion,” IEEE
T ROBOTIC AUTOMvol. 17, no. 3, pp. 242-257, 2001.

R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors,T®run,
and H. Younes, “Coordination for multi-robot explorationdamapping,”
in Proc. of the Nat'| Conf. on Atrtificial Intelligence2000, pp. 852-858
S. Thrun, W. Burgard, and D. Fox, “A probabilistic appoh to
concurrent mapping and localization for mobile robodACH LEARN
and AUTON ROBOT (joint issueyol. 31, no. 5, pp. 1-25, 1998.
——, “Areal-time algorithm for mobile robot mapping wiapplications
to multi-robot and 3D mapping,” ifProc. of the IEEE Int'l Conf. on
Robotics and Automatior2000, pp. 321-328.

S. Thrun, “A probabilistic online mapping algorithmrfteams of mobile
robots,” INT J ROBOT RES2001.

S. Thrun, M. Montemerlo, D. Koller, B. Wegbreit, J. Nbetand E. Nebot,
“FastSLAM: An efficient solution to the simultaneous loealion and
mapping problem with unknown data associatialgrnal of Machine
Learning Research2004.

A. Howard, “Multi-robot mapping using manifold repesgtations,” in
Proc. of the IEEE Int'l Conf. on Robotics and Automati®004, pp.
4198-4203.

I. Rekleitis, G. Dudek, and E. Milios, “Multi-robot clalboration for
robust exploration,”Annals of Mathematics and Artificial Intelligence
vol. 31, no. 1-4, pp. 7-40, 2001.

D. Hahnel, D. Fox, W. Burgard, and S. Thrun, “A highlyfiefent fast-
SLAM algorithm for generating cyclic maps of large-scaleismnments
from raw laser range measurements,” Rmoc. of the IEEE/RSJ Int!l
Conf. on Intelligent Robots and Syster2603.

H. P. Moravec, “Sensor fusion in certainty grids for nielrobots,” Al
Magazine vol. 9, no. 2, pp. 61-74, 1988.

A. Doucet, J. F. G. de Freitas, K. Murphy, and S. Russtao-
Blackwellized particle filtering for dynamic Bayesian netks,” in
Proc. Conf. on Uncertainty in Atrtificial Intelligengce€000.

K. Konolige, D. Fox, B. L. J. Ko, and B. Stewart, “Map merg for
distributed robot navigation,” ifProc. of the IEEE/RSJ Intl Conf. on
Intelligent Robots and Systen2003.

J.-S. Gutmann and K. Konolige, “Incremental mappinglasfie cyclic
environments,” inlEEE Int'l Symp. on Computational Intelligence in
Robotics and Automatiori999.

F. Lu and E. Milios, “Gloablly consistent range scangatnent for
environment mapping,Autonomous Robatsol. 4, no. 4, pp. 333-349,
1997.

——, “Robot pose estimation in unknown environments bgtching
2D range scansJ INTELL ROBOT SYSWol. 18, no. 3, pp. 249-275,
1998.

I. Cox, “Blanche: An experiment in guidance and navigatof an
autonomous robot vehicle][EEE T ROBOTIC AUTOMvol. 7, no. 2,
pp. 193-204, 1991.

J. S. Gutmann and C. Schlegel, “Amos: Comparison of snatching
approaches for self-localization in indoor environmeérits,Proc. of the
Euromicro Workshop on Advanced Mobile Robdi896, pp. 61-67.

[30]

[32]

[34]
[35]

[36]

[37]
[38]
[39]
~ 140]
[41]

[42]

18

G. Weiss, C. Wetzler, and E. V. Puttkamer, “Keeping kra position
and orientation of moving indoor systems by correlationasfge-finder
scans,” inProc. of the IEEE/RSJ Int'l Conf. on Intelligent Robots and
Systems1994, pp. 12-16.

T. Rofer, “Building consistent laser scan map,’Rroc. of the European
Workshop On Advanced Mobile Roho2§01, pp. 83—90.

L. Zhang and B. Ghosh, “Line segment based map building a
localization using 2D laser rangefinder,” Bvoc. of the IEEE Int'l Conf.
on Robotics and Automatipr2000, pp. 2538-2543.

B. Tovar, R. Murrieta-Cid, and C. Esteves, “Robot motjanning for
map building,” inProc. of the IEEE/RSJ Int'l Conf. on Intelligent Robots
and Systems2002, pp. 673-680.

A. Martignoni Ill and W. Smart, “Localizing while mappg: A segment
approach,” inProc. of the Eighteen Nat'l Conf. on Artificial Intelligence
2002, pp. 959-960.

T. Einsele, “Real-time self-localization in unknowmdoor environments
using a panorama laser range finder,Pioc. of the IEEE/RSJ Int'l Conf.
on Intelligent Robots and Systemi®97, pp. 697-702.

L. J. Latecki, R. Lakaemper, X. Sun, and D. Wolter, “Blirlg polygonal
maps from laser range data,”lint'l Cognitive Robotics Worksho2004.
M. Tomono, “A scan matching method using euclidean iiar& signa-
ture for global localization and map building,” Proc. of the IEEE Int'l
Conf. on Robotics and Automatiof004, pp. 866-871.

X. Zezhong, L. Jilin, and X. Zhiyu, “Scan matching based CLS
relationships,” inProc. IEEE Int'l Conf. on Robotics, Intelligent Systems
and Signal Processin@2003.

H. H. Gonzales-Bafios and J. C. Latombe, “Navigatitnategies for
exploring indoor environments/NT J ROBOT RESvol. 21, no. 10-11,
pp. 829-848, 2002.

J. Canou, G. Mourioux, C. Novales, and G. Poisson, “Aalomap
building process for a reactive navigation of a mobile r¢biot Proc.
of the IEEE Int'l Conf. on Robotics and Automatidz004.

F. Amigoni, S. Gasparini, and M. Gini, “Scan matchingivaiut odom-
etry information,” in Proc. of the IEEE Int'l Conf. on Robotics and
Automation 2004.

A. Howard and N. Roy, “The robotics data set repositorgdish),”
2003. [Online]. Available: http://radish.sourceforget/n



