G. Shafer, A Mathematical Theory of Evidence, 1976.

A. B. Yaghlane, T. Denoeux, and K. Mellouli, Coarsening Approximations of Belief Functions, Proceedings of ECSQARU'2001, pp.362-373, 2001.
DOI : 10.1007/3-540-44652-4_32

B. Cobb and P. Shenoy, On the plausibility transformation method for translating belief function models to probability models, International Journal of Approximate Reasoning, vol.41, issue.3, pp.314-330, 2006.
DOI : 10.1016/j.ijar.2005.06.008

T. Denoeux, INNER AND OUTER APPROXIMATION OF BELIEF STRUCTURES USING A HIERARCHICAL CLUSTERING APPROACH, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol.09, issue.04, pp.437-460, 2001.
DOI : 10.1142/S0218488501000880

T. Denoeux and A. B. Yaghlane, Approximating the combination of belief functions using the fast Moebius transform in a coarsened frame, International Journal of Approximate Reasoning, vol.31, pp.1-2, 2002.

R. Haenni and N. Lehmann, Resource bounded and anytime approximation of belief function computations, International Journal of Approximate Reasoning, vol.31, issue.1-2, pp.103-154, 2002.
DOI : 10.1016/S0888-613X(02)00074-9

M. Bauer, Approximation algorithms and decision making in the Dempster-Shafer theory of evidence ??? An empirical study, International Journal of Approximate Reasoning, vol.17, issue.2-3, pp.217-237, 1997.
DOI : 10.1016/S0888-613X(97)00013-3

B. Tessem, Approximations for efficient computation in the theory of evidence, Artificial Intelligence, vol.61, issue.2, pp.315-329, 1993.
DOI : 10.1016/0004-3702(93)90072-J

J. D. Lowrance, T. D. Garvey, and T. M. Strat, A Framework for Evidential-Reasoning Systems, Proceedings of the National Conference on Artificial Intelligence, pp.896-903, 1986.
DOI : 10.1007/978-3-540-44792-4_16

F. Voorbraak, A computationally efficient approximation of Dempster-Shafer theory, International Journal of Man-Machine Studies, vol.30, issue.5, pp.525-536, 1989.
DOI : 10.1016/S0020-7373(89)80032-X

P. Smets, Belief functions versus probability functions, Uncertainty and Intelligent Systems, pp.17-24, 1988.
DOI : 10.1007/3-540-19402-9_51

V. Ha and P. Haddawy, Geometric foundations for interval-based probabilities eds.: KR'98: Principles of Knowledge Representation and Reasoning, pp.582-593, 1998.

P. Black, An examination of belief functions and other monotone capacities, CMU, 1996.

F. G. Cozman, Calculation of posterior bounds given convex sets of prior probability measures and likelihood functions, Journal of Computational and Graphical Statistics, vol.8, issue.4, pp.824-838, 1999.

. Berger, Robust Bayesian analysis: sensitivity to the prior, Journal of Statistical Planning and Inference, vol.25, issue.3, pp.303-328, 1990.
DOI : 10.1016/0378-3758(90)90079-A

T. Herron, T. Seidenfeld, and L. Wasserman, Divisive Conditioning: Further Results on Dilation, Philosophy of Science, vol.64, issue.3, pp.411-444, 1997.
DOI : 10.1086/392559

T. Seidenfeld and L. Wasserman, Dilation for Sets of Probabilities, The Annals of Statistics, vol.21, issue.3, pp.1139-1154, 1993.
DOI : 10.1214/aos/1176349254

F. Cuzzolin, Geometry of upper probabilities, Proceedings of the 3 rd Internation Symposium on Imprecise Probabilities and Their Applications (ISIPTA'03, 2003.

F. Cuzzolin, A Geometric Approach to the Theory of Evidence, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol.38, issue.4, 2007.
DOI : 10.1109/TSMCC.2008.919174

URL : https://hal.archives-ouvertes.fr/inria-00590222

A. Chateauneuf and J. Y. Jaffray, Some characterizations of lower probabilities and other monotone capacities through the use of M??bius inversion, Mathematical Social Sciences, vol.17, issue.3, pp.263-283, 1989.
DOI : 10.1016/0165-4896(89)90056-5

D. Dubois, H. Prade, and P. Smets, A definition of subjective possibility, International Journal of Approximate Reasoning, vol.48, issue.2, 2007.
DOI : 10.1016/j.ijar.2007.01.005

P. Smets, Decision making in the TBM: the necessity of the pignistic transformation, International Journal of Approximate Reasoning, vol.38, issue.2, pp.133-147, 2005.
DOI : 10.1016/j.ijar.2004.05.003

F. Cuzzolin, Two New Bayesian Approximations of Belief Functions Based on Convex Geometry, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.37, issue.4, 2007.
DOI : 10.1109/TSMCB.2007.895991

URL : https://hal.archives-ouvertes.fr/hal-00171417

P. Smets, The Nature of the unnormalized Beliefs encountered in the Transferable Belief Model, Proceedings of UAI'92, pp.292-321, 1992.
DOI : 10.1016/B978-1-4832-8287-9.50044-X