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Abstract. Most of the algorithms dealing with image based 3-D reconstruc-

tion involve the evolution of a surface based on a minimization criterion. The

mesh parametrization, while allowing for an accurate surface representation, suf-

fers from the inherent problems of not being able to reliably deal with self-

intersections and topology changes. As a consequence, an important number of

methods choose implicit representations of surfaces, e.g. level set methods, that

naturally handle topology changes and intersections. Nevertheless, these methods

rely on space discretizations, which introduce an unwanted precision-complexity

trade-off. In this paper we explore a new mesh-based solution that robustly han-

dles topology changes and removes self intersections, therefore overcoming the

traditional limitations of this type of approaches. To demonstrate its efficiency, we

present results on 3-D surface reconstruction from multiple images and compare

them with state-of-the art results.

1 Introduction

A vast number of problems in the area of image-based 3-D modeling are casted as en-

ergy minimization problems where 3-D shapes are optimized such that they best explain

image information. More specifically, when interested in performing 3-D reconstruc-

tion from multiple images, one typically attempts to recover 3-D shapes by evolving

a surface with respect to various criteria, such as photometric or geometric consisten-

cies. Meshes, either triangular, polygonal or even tetrahedral, are one of the most used

forms of shape representation. Traditionally, an initial mesh is obtained using some well

known method, e.g. bounding boxes or visual hulls, and then deformed over time such

that it minimizes an energy, based typically on some form of image similarity measure.

There exist two main schools of thought on how to cast the above mentioned problem.

Lagrangian methods propose an intuitive approach where the surface representa-

tion, i.e. the mesh, is directly deformed over time. Meshes present numerous advan-

tages, among which adaptive resolution and compact representation, but raise two ma-

jor issues of concern when evolved over time: self-intersections and topology changes.

It is critical to deal with both issues when evolving a mesh over time. In order to answer

to this, McInerney and Terzopoulos [1] proposed topology adaptive deformable curves

and meshes, called T-snakes and T-surfaces. However, in solving the intersection prob-

lem, the authors use a spatial grid, thus imposing a fixed spatial resolution. In addition,

only offsetting motions, i.e. inflating or deflating, are allowed. Lauchaud et al. [2] pro-

posed a heuristic method where merges and splits are perform in near boundary cases:



when two surface boundaries are closer than a threshold and facing each other, an artifi-

cial merge is introduced; a similar procedure is applied for a split, when the two surface

boundaries are back to back. Self-intersections are avoided in practice by imposing a

fixed edge size. In addition, Pons et al. [3] recently proposed a method based on a re-

stricted 3-D Delaunay triangulation. Two instances of the mesh are needed: one at time

t - a proper mesh ( without self intersections and topological issues) used to mark each

tetrahedron as belonging to a particular material (inside/outside), and another mesh at

another time instance t+1, which "treated" based on the the previous cell categoriza-

tion. While being a very elegant solution, it nevertheless relies on the assumption that

the mesh is sufficiently dense, such that the Delaunay triangulation will not consider-

ably change its layout.

Eulerian methods formulate the problem as time variation over sampled space, most

typically fixed grids. In such a formulation, the mesh, also called the interface, is im-

plicitly represented. One of the most successful methods, the level set method [4] [5],

represents the interface as the zero set of a function. Such an embedding within an im-

plicit function allows one to automatically handle mesh topology changes, i.e. merges,

splits. In addition, such methods allow for an easy computation of geometric proper-

ties. Nevertheless, this method does not come without its drawbacks. The amount of

space required to store the implicit representation is much larger than when storing a

mesh parametrization. In addition, at each step of the evolution, the mesh has be re-

covered from the implicit function. This operation is limited by the grid resolution.

Consequently, a mesh with variable resolution cannot be properly preserved by the em-

bedding function.

In light of this, we propose a mesh-based lagrangian approach. To solve for the self-

intersections and topology changes issues, we adopt the algorithm proposed by Jung et

al. [6] in the context of mesh-offseting and extend it to more general situations, as faced

with when modeling from multiple images. We have successfully applied our approach

to surface reconstruction using multiple cameras. The 3-D reconstruction literature is

vast. Recently, Furukawa et al. [7] provide some of the most impressive results. They

use however a mesh based solution [2] mentioned above that imposes equal face sizes.

Pons et al. [8] provide an elegant level-set based implementation. Hernandez et al. [9]

provide an in-between solution: they choose an explicit mesh representation, however

they immerse the mesh within a vector field with forces proportional to the image con-

sistencies at given places within a grid. Self-intersections and topology changes are

not handled. Other approaches are also surveyed in the recent overview on multi-view

stereo reconstruction algorithms [10]. Our contribution with respect to these methods is

to provide a purely mesh based solution that does not constrain meshes and allows faces

of all sizes as well as topology changes, with the goal of increasing precision without

sacrificing complexity when dealing with surface evolution problems.

The rest of the paper is organized as follows. Section 2 introduces the algorithm that

handles self-intersection and topology changes. In section 3, we present its application

to the 3-D surface reconstruction problem. Section 4 shows results on well known data

sets and makes comparisons with state-of-the-art approaches, before concluding in sec-

tion 5.



2 TransforMesh - A Topology-Adaptive Self-Intersection Removal

Mesh Solution

As stated earlier, the main limitations that prevent many applications from using meshes

are self-intersections and topology changes, which frequently occur when evolving

meshes. In this paper, we show that such limitations can be overcome using a very

intuitive geometrically-driven solution. In essence, the approach preserves the mesh

consistency by detecting self-intersections and considering the subset of the original

mesh surface that is outside with respect to the mesh orientation. A toy example is il-

lustrated in Figure 1. Our method is inspired by the work of [6] proposed in the context

of mesh-offsetting or mesh expansions. We extend it to the general situation of identify-

ing a valid mesh, i.e. a manifold, from a self-intersecting one with possible topological

issues. The currently proposed algorithm has the great advantage of dealing with topo-

logical changes naturally, much in the same fashion as the Level-Set based solutions,

casting it as a viable solution to surface evolutions with meshes. The only requirement

is that the input mesh is the result of the deformation of an oriented and valid mesh. The

following sections detail the sequential steps of the algorithm.

(a) Input (b) Input (c) Intersections (d) Output (e) Output

Fig. 1. A toy example of TransforMesh at work.

2.1 Pre-treatment

Most mesh-related algorithms suffer from numerical problems due to degenerate trian-

gles. Such degenerate triangles are mainly triangles having area close to zero. In order

to remove those triangles, two operations are performed: edge collapse and edge flip.

2.2 Self-intersections

The first step of the algorithm consists of identifying self-intersections, i.e. edges along

which triangles of the mesh intersect. In practice, one would have to perform n2/2
checks to see if two triangles intersect, which can become quite expensive when the

number of facets is large. In order to decrease the computational time, we use a bound-

ing box test to determine which bounding boxes (of triangles) intersect, and only for

those perform a triangle intersection test. We use the fast box intersection method imple-

mented in [11] and described in [12]. The complexity of the method is O(n logd(n)+k)
for the running time and O(n) for the space occupied, where n is the number of trian-

gles, d the dimension (3 in the 3-D case), and k the output complexity, i.e., the number

of pairwise intersections of the triangles.



2.3 Valid region growing

The second step of the algorithm consists in identifying valid triangles in the mesh. To

this purpose, a valid region growing approach is used to propagate validity labels on

triangles that composed the outside of the mesh.

(a) Init (b) Seed-triangle (c) Valid Queue (d) Partial Queue (e) End

Fig. 2. Valid Region Growing (2-D simplified view). The selected elements are in bold.

Initialization. Initially, all the triangles are marked as non-visited. This corresponds to

Figure 2(a). Three queues are maintained: one named V , of valid triangles, i.e. triangles

outside and without intersections; one named P of partially valid triangles, i.e. only part

of the triangle is outside, and finally one named G, where all the valid triangles will be

stored until stitched together into a new mesh (in section 2.4).

All that follows is performed within an outer loop, while there still exists a valid

seed triangle.

Seed-triangle Finding. A seed-triangle is defined as a non-visited triangle without

intersections whose normal does not intersect any other triangle of the same connected

component. This corresponds to Figure 2(b). In other words, a seed-triangle is a triangle

that is guaranteed to be on the exterior. This triangle is crucial, since we will start our

valid region growing from such a triangle. If found, the triangle will be added to V and

marked as valid; otherwise, the algorithm will jump to the next stage (section 2.4).

The next two-steps are performed within a inner loop until both V and P are empty.

Valid Queue Processing. While V is not empty, pop a triangle t from the queue, add

it to G and for each neighbouring triangle N(t) perform the following: if N(t) is non-

visited and has no intersections, then add it to V; if N(t) is non-visited and has intersec-

tions, then add it to P together with the entrance segment and direction, corresponding

in this case to the oriented half-edge. (see Figure 2(c)).



Partially-Valid Queue Processing. While P is not empty, pop a triangle t from the

queue, together with the entrance half-edge ft. Also, we have previously calculated all

the intersection segments between this triangle and all the other triangles. Let St =
{sti} represent all the intersection segments between triangle t and the other triangles.

In addition, let Ht = {htj |where j = 1..3} represent the triangle half-edges. A con-

strained 2-D triangulation is being performed in the triangle plane, using [13], to ensure

that all segments in both St and Ht appear in the new mesh structure and that propa-

gation can be achieved in a consistent way. A fill-like traversal is performed from the

entrance half-edge to adjacent triangles, stopping on constraint edges, as depicted in

Figure 3. A crucial aspect to ensure a natural handling of topological changes is on

choosing the correct side of continuation of the "fill" like region growing when cross-

ing a partially valid triangle. The correct orientation is chosen such that, if the original

normals are maintained, the two newly formed sub-triangles would preserve the water-

tightness constraint of a manifold. This condition can also be casted as following: the

normals of the two sub-triangles should be opposing each other when the two sub-

triangles are "folded" on the common edge. A visual representation of the two cases is

shown in Figure 4.

(a) Triangle Intersections
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(b) Partial Triangle Traversal

Fig. 3. Partial Triangle Traversal.
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Fig. 4. Partial Triangle Crossing Cases (side view).



2.4 Triangle Stitching

The region growing algorithm described previously will iterate until all the triangles

have been selected. In the chosen demo example, this corresponds to Figure 2(e). At

this stage, what remains to do is to stitch together the 3-D triangle soup (G queue) in or-

der to obtain a valid mesh which is manifold. We adopt a method similar in spirit to [14,

15]. In most cases this is a straight forward operation, reduced to identifying the com-

mon vertices and edges, followed by stitching. However, there are three special cases,

in which performing a simple stitching will violate the mesh constraints and produce

locally non-manifold structures. The special cases, shown in Figure 5, arise from per-

forming stitching in places where the original structure should have been maintained.

We adopt the naming convention from [14], calling them the singular vertex case, the

singular edge case and the singular face case. All cases are easy to identify only from

local operations and are identified after all the stitching has been performed.

In the singular vertex case, in order to detect whether vertex v is singular, we adopt

the following algorithm: mark all the facets incident to the vertex v as non-visited. Then

start from a facet of v, mark it visited and do the same with its non-visited neighbours

that are also incident to v (neighbour as chosen based on half-edges). The process is

repeated until all the neighbouring facets are processed. If by doing so we exhausted all

the neighbouring facets, vertex v is non singular, otherwise it is singular, so a copy of it

is created and added to all the remaining non-visited facets. In order to detect a singular

edges e, all we have to do is count the number of triangles that share that edge. If it is

bigger than 2, we have a singular edge case and two additional vertices and a new edge

will be added to account for it.

In practice, only the singular vertex case appears in real triangular mesh test cases.

Such an example has been created to illustrate such a scenario and it is shown in Figure

6.

(a) Singular Vertex (b) Singular Edge (c) Singular Face

Fig. 5. Special case encountered while stitching a triangle soup.

2.5 Topological Changes

The partial-triangle crossing technique described earlier ensures a natural handling of

the topological changes (splits and joins) that plagued the mesh approaches until now.

Representative cases are illustrated in Figure 7.

3 Using TransforMesh to perform mesh evolutions.

Our original motivation in developing a mesh self-intersection removal algorithm was

to perform mesh evolutions, in particular when recovering 3-D shapes from multiple



(a) Original Mesh. (b) Resulting mesh.

Fig. 6. An example of how a singular vertex occurs in a typical self-intersection removal situation,

due to an inverted triangle (marked in red).

(a) Join Case (b) Split Case (c) Inside Carving Case

Fig. 7. Different topological changes examples (2-D simplified view). The outline of the final

surface obtained after self-intersection removal is outlined in bold blue.

calibrated images. As stated earlier, few efforts have been put in mesh-based solutions

for such 3-D surface reconstruction problem, mostly due to the topological issues raised

by mesh evolutions. However, meshes allow one to focus on the region of interest in

space, namely the shape’s surface and, as a result, lower the complexities and lead

to better precisions with respect to volumetric approaches. In this section we present

the application of TransforMesh to the surface reconstruction problem. Often such a

problem is casted as an energy minimization over a surface. We decided to start from

exact visual hull reconstructions, obtained using [16] and further improve the mesh

using photometric constraints by means of an energy functional described in [8].

The photometric constraints are casted as an energy minimization problem using

similarity measure between pairs of cameras that are close to each other. We denote by

S ⊂ R
3 the 3-D surface. Let Ii : Ωi ⊂ R

2 → R
d be the image captured by camera i

(d=1 for grayscale and d=3 for color images). The perspective projection of camera i
is represented as Πi : R

3 → R
2. Since the method uses visibility, consider Si as part of

surface S visible in image i. In addition, the back-projection of image from camera i
onto the surface is represented as Π−1

i : Πi(S) → Si.

Armed with the above notation, one can compute a similarity measure Mij of the

surface S as the the similarity measure between image Ii and the reprojection of image

Ij into the other camera i via the surface S. Summing across all the candidate stereo

pairs, one can write:



M(S) =
∑

i

∑

j 6=i

Mij(S) (1)

Mij(S) = M |Ωi∩Πi(Sj)

(

Ii, Ii ◦ Πi ◦ Π−1
j,S

)

(2)

Finally, the surface evolution equation at a point x is given by:

∂S

∂t
=

[

− λ1Esmooth + Eimg

]

N (3)

where Esmooth depends on the curvature H (see [7]), N represents the surface

normal and Eimg is a photoconsistency term that is a summation across pairs of cameras

which depends upon derivatives of the similarity measure M, of the images I , of the

projection matrices Π and on the distance xz (see [8] for more details).

In the original paper [8], the surface evolution equation was implemented within

the Level-Set framework. We extend it to meshes using the TransforMesh algorithm

described in the previous section. The original solution performs surface evolution us-

ing a coarse to fine approach in order to escape local minima. Traditionally, in Level-Set

approaches, the implicit function that embeds the surface S is discretized evenly on a

3-D grid. As a side-effect, all the facets of recovered surface are of approximately equal

triangle size. In contrast, mesh based approaches do not impose such a constraint and

allow facets of all sizes on the evolving surface. This is particularly useful when starting

from visual hulls, for which the initial mesh contains triangles of all dimensions. In ad-

dition, the dimension of visual facets appears to be a relevant information since regions

where the visual reconstruction is less accurate, i.e. concave regions on the observed

surface, are described by bigger facets on the visual hull. Thus, we adopt a coarse to

fine approach in which bigger triangles are moved until they stabilize, followed by di-

mension reduction via an edge-splits. The algorithm iterates at a smaller scale until the

desired smallest edge size is obtained. Therefore, the algorithm uses a multi-scale ap-

proach, starting from scale smax to smin = 1 in λ2 =
√

2 increments using ∆t = 0.001
as the timestep. A vertex can maximally move 10% of the average incoming half-edges.

The original surface, obtained from a visual hull, is evolved using equation (3), where

the cross correlation was used as a similarity measure and λ1 = 0.3. Every 5 iterations

TransforMesh is performed, in order to remove the self-intersections and allow for any

topological changes.

4 Results

We have tested the mesh evolution algorithm with the datasets provided by the Multi-

View Stereo Evalutation site [10] (http://vision.middlebury.edu/mview/) and our results

are comparable with state-of-the-art: we rank in the top 1-3 (depending on the data set

and ranking criteria chosen) and the results are within sub-milimeter accuracy. Detailed

results are extracted from the website and presented in Table 1 (consult the website

for detailed info and running times). We have also included results by Furukawa et al.

[7], Pons et al. [8] and Hernandez et al. [9], considered to be the state of the art. The



differences between all methods are very small, ranging between 0.01mm to 0.3mm.

Some of our reconstruction results are shown in Figure 8.

P
P

P
P

P
P
P

Paper

Dataset Temple Ring Temple Sparse Ring Dino Ring Dino Sparse Ring

Acc. Compl. Acc. Compl. Acc. Compl. Acc. Compl.

Pons et al. [8] 0.60mm 99.5% 0.90mm 95.4% 0.55mm 99.0% 0.71mm 97.7%

Furukawa et al. [7] 0.55mm 99.1% 0.62mm 99.2% 0.33mm 99.6% 0.42mm 99.2%

Hernandez et al. [9] 0.52mm 99.5% 0.75mm 95.3% 0.45mm 97.9% 0.60mm 98.52%

Our results 0.55mm 99.2% 0.78mm 95.8% 0.42mm 98.6% 0.45mm 99.2%

Table 1. 3-D Rec. Results. Accuracy: the distance d in mm that brings 90% of the result R within

the ground-truth surface G. Completeness: the percentage of G that lies within 1.25mm of R.

The algorithm reaches a good solution without the presence of a silhouette term in

the evolution equation. In a typical evolution scenario, there are a more self-intersections

at the beginning, but, as the algorithm converges, intersections rarely occur. Addition-

ally, in the temple case, we performed a test where we have started from one big sphere

as the startup condition, in order to check whether the topological split operation per-

forms properly. Proper converges was obtained. We acknowledge that TransforMesh

was not put to a thorough test using the current data sets, which might leave the reader

suspicious about special cases in which the method could fail. We have implemented

a mesh morphing algorithm in order to test the robustness of the method. We have

successfully morphed meshes with significantly different topology from the surface of

departure. Results will be detailed in another publication.

Implementation Notes. In our implementation we have made extensive use of CGAL

(Computational Geometry Algorithms Library) [17] C++ library, which provides excel-

lent implementations for various algorithms, among which the n-dimentional fast box

intersections, 2-D constrained Delaunay triangulation, triangular meshes and support

for exact arithmetic kernels. The running times of TransforMesh depend greatly on the

number of self-intersections, since more than 80% of the running time is spent perform-

ing them. Typically, the running time for performing the self-intersections test is under

1 second for a mesh with 50, 000 facets, where exact arithmetic is used for triangle

intersections and the self-intersections are in the range of 100.

5 Conclusion

We have presented a fully geometric efficient Lagrangian solution for triangular mesh

evolutions able to handle topology changes gracefully. We have tested our method in

the context of multi-view stereo 3-D reconstruction and we have obtained top ranking

results, comparable with state-of-the-art methods in the literature. Our contribution with

respect to the existing methods is to provide a purely geometric mesh-based solution

that does not constrain meshes and that allows for facets of all sizes as well as for

topology changes.
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(a) Dino - Input (b) Dino - Start (c) Dino - Results (d) Dino - Closeup

(e) Temple - Input (f) Temple - Start (g) Temple-Results (h) Temple-Closeup

Fig. 8. Reconstruction results obtained in the temple and in the dino case (the gradient code is a

courtesy of Jean-Phillippe Pons).
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