Object Recognition Using a Generalized Robust Invariant Feature and Gestalt's Law of Proximity and Similarity

Abstract : In this paper, we propose a new context-based method for object recognition. We first introduce a neuro-physiologically motivated visual part detector. We found that the optimal form of the visual part detector is a combination of a radial symmetry detector and a corner-like structure detector. A general context descriptor, named G-RIF (generalized-robust invariant feature), is then proposed, which encodes edge orientation, edge density and hue information in a unified form. Finally, a context-based voting scheme is proposed. This proposed method is inspired by the function of the human visual system, called figure-ground discrimination. We use the proximity and similarity between features to support each other. The contextual feature descriptor and contextual voting method, which use contextual information, enhance the recognition performance enormously in severely cluttered environments.
Type de document :
Article dans une revue
Pattern Recognition, Elsevier, 2008, 41 (2), pp.726--741. 〈10.1016/j.patcog.2007.05.014〉
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00590248
Contributeur : Team Perception <>
Soumis le : lundi 9 mai 2011 - 15:38:02
Dernière modification le : mardi 10 mai 2011 - 09:19:47
Document(s) archivé(s) le : mercredi 10 août 2011 - 02:34:24

Fichier

POCV.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Kim Sungho, Kuk-Jin Yoon, Inso Kweon. Object Recognition Using a Generalized Robust Invariant Feature and Gestalt's Law of Proximity and Similarity. Pattern Recognition, Elsevier, 2008, 41 (2), pp.726--741. 〈10.1016/j.patcog.2007.05.014〉. 〈inria-00590248〉

Partager

Métriques

Consultations de la notice

147

Téléchargements de fichiers

195