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Abstract

In this paper, we propose a new context-based method
for object recognition. We first introduce a neuro-
physiologically motivated visual part detector. We found
that the optimal form of the visual part detector is a com-
bination of a radial symmetry detector and a corner-like
structure detector. A general context descriptor, named G-
RIF (Generalized-Robust Invariant Feature), is then pro-
posed, which encodes edge orientation, edge density and
hue information in a unified form. Finally, a context-based
voting scheme is proposed. This proposed method is in-
spired by the function of the human visual system, called
figure-ground discrimination. We use the proximity and
similarity between features to support each other. The con-
textual feature descriptor and contextual voting method,
which use contextual information, enhance the recogni-
tion performance enormously in severely cluttered environ-
ments.

1. Introduction

How to cope with image variations caused by photomet-
ric and geometric distortions is one of the main issues in
object recognition. It is generally accepted that the local
invariant feature-based approach is very successful in this
regard. This approach is generally composed of visual part
detection, description and classification.

The first step in the local feature-based approach is vi-
sual part detection. Lindeberg [9] proposed a pioneering
method on blob like image structure detection in scale-
space. Shokoufandeh [24] extended this feature to wavelet
domain. Schmid et al [21] compared various interest point
detectors and concluded that the scale-reflected Harris cor-
ner detector is most robust to image variations. Mikola-
jczyk and Schmid [13] also compared visual part extractors
and found that the Harris-Laplacian based part detector is
suitable for most applications. Recently, several visual de-

scriptors have been proposed [10],[14],[5],[26]. Most ap-
proaches try to encode local visual information such as spa-
tial orientation or edge.

Based on these local visual features, several object
recognition methods, such as the probabilistic voting
method [20] and constellation model-based approaches [4],
[15], have been introduced. However, those approaches oc-
casionally fail to recognize objects with few local features
in highly cluttered backgrounds. Recently, Stein and Hebert
[25] proposed a background invariant object recognition
method by combining local feature with the object segmen-
tation scheme. Because this method is based on prior figure-
ground information, it cannot be used in a general environ-
ment. Torralba et al. [27] introduced a completely differ-
ent approach that exploits the background clutter informa-
tion into object recognition. The background information
is called place context or exterior context in that method.
The exterior context information is very useful for practical
applications such as intelligent mobile robotics systems.

Our research interest is how to efficiently extract an
object’s interior contextual information to enhance ob-
ject recognition performance in strongly cluttered environ-
ments. We concentrate on the properties of a human visual
receptive field and propose a computationally efficient local
context coding method. We also propose an object recog-
nition method based on the human visual system’s figure-
ground discrimination mechanism, which is accomplished
by grouping interior contextual information.

2. Perceptual visual part detection

Appearance- or view-based object recognition methods
were proposed in the early 1990s for face recognition and
currently have become popular in the object recognition
society. However, global appearance representation using
a perfect support window as shown in Figure1(a) cannot
recognize objects in cluttered environments because of im-
perfect figure-ground segmentation. A bypassing method
is to approximate an object as the sum of its sub-windows.



(a)

shape?size?

location?

shape?size?

location?

(b)

Figure 1.(a) Perfect global object description. (b) Issues in local
part-based object description.

The main issue in this approach is how to select the loca-
tion, shape and size of a sub-window as shown in Figure
1(b). For successful object recognition, visual parts have to
satisfy the following requirements. First, background infor-
mation should be excluded as much as possible. Second,
they must be perceptually meaningful. Finally, they should
be robust to the effects of photometric and geometric distor-
tions. Mahamud [12] suggested a greedy search method to
find visual parts that satisfy the above requirements. Image
structure-based part detectors are more efficient than regu-
lar grid-based part [21], [10]. Although these methods work
well, they do not exploit the full structural information of
interesting objects.

Recently, Serre and Riesenhuber [22] proposed a neuro-
computational object recognition method by precisely mod-
eling the properties of simple and complex cells. The ba-
sic concepts of the model are tuning and MAX operation
on both feature detection and recognition. Although this
model is a biologically good model, it is computationally
inefficient because of the enormous tuning process of the
location, size and phase of the Gabor filter.

We approximate the tuning process of a simple cell by
two dominant Gabor filters - 0° and 90° phases [19]. A
0° phase Gabor is equivalent to the 2nd derivative of a
Gaussian, and a 90° phase is equivalent to the 1st derivative
of a Gaussian kernel. According to the complex cell model,
location and size invariance are achieved by the MAX
operation of various tuning responses. Figure2 shows the
complex cell responses using the approximated model for
cross and circle structures.

(a)          (b)            (c)               (d)(a)          (b)            (c)               (d)

Figure 2.(a) Location tuning by spatial MAX operation of 1st
derivative of Gaussian. (b) Location tuning by spatial MAX opera-
tion of 2nd derivative of Gaussian. (c) Scale tuning by scale-space
MAX operation of 2nd derivative of Gaussian centered on (a). (d)
Scale tuning by scale-space MAX operation of 2nd derivative of
Gaussian centered on (b).

(1) Location tuning using 1st derivative of Gaussian
- Select maximal response in all orientations within a 3× 3
complex cell.
- Suitable method: Harris corner or KLT corner extraction
(both eigen values are large).
(2) Location tuning using 2nd derivative of Gaussian
- Select maximal response in all orientations within 3× 3
complex cell.
- Suitable method: Laplacian or DoG gravity center (radial
symmetry point).
(3) Scale tuning using convexity
- Select maximal response in directional scale-space [16].
- For computational efficiency, a convexity measure such as
DoG is suitable. This is related to the properties of the V4
receptive field where the convex part is used to represent
visual information [17].

Figure3 shows the biologically motivated and compu-
tationally efficient model. Scale reflected 1st derivative
of Gaussian can be approximated by subtracting neigh-
boring pixels in a scale-space image, and 2nd derivative
of Gaussian can be approximated by subtracting between
scale-space images. This is supported by the psychophysi-
cal facts that HVS attends on gravity centers and high cur-
vature points [18], and objects are decomposed into a per-
ceptual part that is convex [8], [11].

Interestingly, the final approximated model of the sim-
ple and complex cells receptive field is a conjunction of the
Harris-Laplace and DoG-DoG feature detectors. Figure4
shows the results of the proposed perceptual part detector.
Note that the proposed method extracts all possible visual
parts complementing each other.

3. General contextual descriptor

The description of visual parts is very important for ob-
ject identification or classification. Two important factors in
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Figure 3.The final model of perceptual part detection which is an
approximated simple and complex cell model of HMAX.
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Figure 4. (a) Right pass: radial symmetry part. (b) left pass:
corner-like part. (c) final visual part detector.

descriptor design are selectivity and invariance. Selectivity
means that different parts or part classes can be discrimi-
nated robustly. Invariance means that the same parts or part
classes can be detected regardless of photometric and geo-
metric distortions. Descriptors must satisfy both properties
appropriately. Direct use of pixel data shows very high se-
lectivity but very low invariance. A PCA-based descriptor
shows high selectivity but low invariance due to its proper-
ties that are sensitive to the translation of interest points [5].
Histogram-based descriptors show a proper compromise of
selectivity and invariance [10], [26], [1].

Then, what information has to be represented? We found
the solution from the properties of the receptive field in
V1, V4. Through simple and complex cells, orientation
response maps are generated and fine orientation adapta-
tion occurs on the receptive field within the attended convex
part in V4 [2]. The computational method of the orientation
adaptation phenomenon is steering filtering [3]. Adapted
orientation is calculated by the maximum response spanned
by basis responses. Color blobs also exist in the hyper col-
umn where opponent color information is stored. Hue rep-
resents perceptual color information like the human visual
system. Hue is invariant to affine illumination change and
highlights. This orientation and color information is com-
bined in V4 [29].

Summarizing these findings, a plausible receptive field
response in V4 is shown in Figure5. Adapted orientation,
edge strength and hue field information coexist within the
attended convex visual part.

Now, how does the HVS encode the receptive field re-

Figure 5.Plausible receptive model in V4: orientation adapted bar
with edge strength on the hue field.
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Figure 6. Plausible receptive field model in higher area V4: black
circles represent larger receptive fields.

sponses within the attended convex part? Few facts are dis-
covered on this point, but it is certain that larger receptive
fields are used to represent broader orientation bands [7].
Figure6 represents such a receptive field model in higher
area V4. Smaller receptive field information such as edge
orientation, edge strength and hue are encoded to larger re-
ceptive fields (black circular regions). The density of the
black circle represents the HVS’ attention level. 86% fixa-
tion occurs around the center receptive field [18].

Each receptive field encodes histogram-based orienta-
tion distribution in [0, π], hue distribution in [0, 2π] and
scalar value of edge density in [0, 1]. The coordinates of the
receptive field are aligned to the dominant orientation of the
convex visual part, which is calculated efficiently by steer-
ing filtering [3]. This encoding scheme can control the level
of local context information-aperture size and feature level
as in Table1. The proposed encoding scheme is a general
form of the contextual feature representations of [10], [26],
[1]. We can select a suitable level of context depending on
applications. In general, as the aperture size is larger, the
recall is lower and the precision is higher. Figure7 shows
an example of visual part matching using the proposed part
detector and general context descriptor (G-RIF: generalized
robust invariant feature). Most visual parts correspond to
one another by a simple Euclidean distance measure. More
specific details of implementation and invariant properties
can be found in [6].

4. Neighboring context-based object recogni-
tion

A conventional classifier based on local informative fea-
tures is direct voting of nearest neighbors as in Figure8(a)



Context Contents of information

L1:1
Aperture L2:1,L2:2,L2:3,L2:4,L2:5,L2:6,L2:7,L2:8

size L3:1,L3:2,L3:3,L3:4,L3:5,L3:6,L3:7,L3:8,
L3:9,L3:10,L3:11,L3:12
L4:1,L4:2,L4:3,L4:4
(1) Edge orientation [0, π], quan. level:4

Type of (2) Edge density [0, 1]
feature (3) Hue information [0, 2π], quan. level:4

etc: (1)+(2), (1)+(3),(2)+(3), (1)+(2)+(3)

Table 1.Level of local context.

Figure 7. The matching results on the rotated objects using the
perceptual part detector and local contextual descriptor [G-RIF:
aperture size L3 and feature type (1)+(2)].

[20]. Although there are more sophisticated classifiers,
such as SVM [28], Adaboost [30], Bayesian decision the-
ory [15], and strong spatial constraint-based indexing [23],
those methods are basically based on the concept of nearest
neighbors and their voting.

The proposed object recognition method, named neigh-
boring context-based voting, can be modeled as follows:

L = arg max
l

P (l|X) ≈ arg max
l

NX∑

i=1

P (l|xi) (1)

where local featurexi belongs to input feature setX, l is
an object label andNx is the number of input local fea-
tures. The posteriorP (l|X) is approximated by the sum
rule. We use the following binary probability model to de-
signP (l|xi):

P (l|xi) =

{
1 i ∈ l, SM (i, l) ≥ ε

0 otherwise
(2)

whereSM (i, l) is called a feature-label map which repre-
sents the strength of the match between an input feature and
its label based on neighboring context information. It is cal-
culated as follows:

SM (i, l) =
∑

j∈N(i)

w(i, j)c(j, l) (3)

whereN(i) is the support region (or neighbors) of feature
i. As shown in Figure9, neighboring context information
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Figure 8. (a) Conventional classifier: direct voting of nearest
neighbor. (b) Novel classifier: neighboring context-based voting.

Figure 9. Concept of feature-label map (strength of match) gener-
ation using neighboring context information.

is aggregated by summing over the neighborhood using the
above equation.w(i, j) represents the support (contextual)
weight at sitej in the support region. The support from
the neighborhood is valid when the neighboring visual parts
have the same label (or object index) as the site of interest.
This is the same concept as Gestalt properties, i.e., prox-
imity and similarity. c(j, l) is the goodness of match pair
(j, l)

The support weight will be proportional to the probabil-
ity, p(Ol

j |Ol
i) whereOl

i represents the event that the label of
a sitei is l:

w(i, j) = k · p(Ol
j |Ol

i) (4)



When we consider the fixed labell, it can be rewritten as:

w(i, j) = k · p(lxi = l, lxj = l) (5)

wherelxi represents the label of featurexi andk is normal-
ization factor. The probability of both features coming from
the same objectl is defined as:

p(lxi = l, lxj = l) =
S(lxi = l)S(lxj = l)∑NL

m=1

∑NL

n=1 S(lxi = n)S(lxj = m)
(6)

whereS(lxi = l) means the similarity that a local feature is
mapped to a labell. This is equivalent to theχ2 kernel value
between input featurexi and its nearest neighborxl

1NN ,
whose label isl:

S(lxi = l) = Kχ2(xi, x
l
1NN ) (7)

Theχ2 similarity kernel is defined as [28]:

Kχ2(x, (y)) = exp{−ρχ2(x,y)} (8)

whereρ is set to 3∼4 normally. Goodness of match,c(j, l)
is also defined asS(lxj = l).

Although the feature-label mapSM (i, l) is calculated us-
ing the above similarity kernel, it can be formulated in re-
cursive form by simply reusing the feature label map in the
next iteration, rather than the similarity kernel.

Figure10(a)shows the feature label map calculated from
the similarity kernel and Figure10(b)shows the feature la-
bel map after applying the proposed method: contextually
weighted feature-label map after two recursions. Figure11
represents a close up view of Figure10and displays several
feature locations. Note the power of neighboring contextual
information, which enhances the strength of figural features
(here, f.id: 527, 536) and suppresses the background fea-
tures (here, f.id: 525).

5. Experimental results

Although there are several open object databases, such
as Amsterdam DB, PASCAL DB, ETH-80 DB, and Cal-
tech DB, we evaluate the proposed method using COIL-100
DB for feature comparison. We also use our DB, CMU DB
(available at http://www.cs.cmu.edu/∼stein/BSIFT) which
contain background clutter, because our research goal is
to recognize general objects in severely cluttered environ-
ments. Figure12 (top) shows sample objects in our DB,
composed of 21 textureless 2D objects, 26 textured 2D ob-
jects, 26 textureless 3D objects and 31 textured 3D objects.
We stored each model’s image in the canonical viewpoint.
Because our research issue is how the contextual informa-
tion enhances recognition, fixing a 3D viewpoint is reason-
able. To effectively validate the power of the context-based
object recognition method, we made test images as in Fig-
ure12(bottom). 104 objects are placed on a highly cluttered

(a)

(b)

Figure 10. (a) Initial feature-label map obtained from similarity
kernel. (b) Contextually weighted feature-label map using the pro-
posed method.

Figure 11.Close-up view of Figure10around Label 41 and corre-
sponding feature locations.

background. These DB and test images are acquired using
a SONY F717 digital camera and are resized to 320×240.

First, we compare the performance of the proposed G-
RIF with SIFT, which is a state-of-the art descriptor [10],



Figure 12.(Top) examples of 104 general object models, (bottom)
corresponding examples of 104 test objects on a highly cluttered
background.
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Figure 13.Comparison of NNC classification accuracy between
G-RIF (left, right, both paths in Figure3) and SIFT.

[14]. Typically, visual part detectors are evaluated only in
terms of their repeatability. However, the evaluation should
be in the context of a task, such as object labeling in this pa-
per. We evaluate the features using the direct voting-based
classifier which is used commonly as in Figure8(a). We
use the binary program offered by Lowe [10]. The accuracy
of detection rate is used as a comparison measure which
is widely used in classification or labeling problems. Fig-
ure13shows the evaluation results using our DB by chang-
ing the similarity threshold of direct voting. G-RIF shows
better performance than SIFT and reveals the complemen-
tary properties of G-RIF: right path (gravity center point)
and G-RIF: left path (high curvature point).

The 2nd and 3rd columns in Table2 show the over-
all recognition results using the optimal classifier threshold
(0.8). The recognition rate using G-RIF is higher than the
SIFT feature by 5.77%. This good performance originates
from the complementary properties of the proposed visual
part detector and the effective spatial coding of multiple fea-
tures in a unified way. In this test, we set the aperture level
up to L3 and feature level by (1)+(2). Figure14shows sev-
eral successful examples using G-RIF that are incorrect us-

Figure 14.Correct detection using G-RIF (failure cases using
SIFT).

Feature SIFT G-RIF G-RIF

Classifier
Direct
voting

Direct
voting

Contextual
voting

# success
/# test

62/104 68/104 74/104

Success
rate [%]

59.61% 65.38% 71.15%

Table 2.Recognition accuracy (similarity threshold: 0.8) for 104
test images.

Figure 15.G-RIF vs SIFT on COIL-100 DB).

ing the SIFT feature, although our feature dimension is 105
(84 for edge orientation + 21 for edge density) and SIFT’s
is 128.

We also compared G-RIF and SIFT on COIL-100 DB.
Since the DB is composed of multiple views with interval
5°, we use the frontal view (0°) as a model image and test
5 different views up to 45°. We use the NNC-based simple
voting as a classifier. Figure15shows the evaluation results.
Note that G-RIF shows upgraded performance by 20% at
45°view angle.

Next, we compared our context-based voting (Fig-
ure8(b)) to the conventional nearest-neighbor based direct
voting (Figure8(a)). We used the same visual feature (G-
RIF) proposed in this paper and our DB. The neighborhood
size is set to two times the part scale. Overall test results
are shown in Table2 (3rd and 4th columns). The contex-
tual voting-based classifier shows better recognition perfor-
mance than direct voting by 5.77%. This good performance



(a)
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Figure 16.Recognition performance of nearest neighbor-based di-
rect voting method (left column) and contextual voting method
(right column): (a) Normal case, (b) ambiguous case and (c) fail-
ure using direct voting but success using ours.

originates from the effective use of the neighboring context.
The contextual influence was explained in Figure11.

Figure 16 shows three kinds of recognition examples
with both methods. Figure16(a) is a normal case. Both
methods succeeded for textured objects. Figure16(b)show
ambiguous recognition results by direct voting but sta-
ble recognition results by contextual voting. Finally, Fig-
ure 16(c) shows the failure case by direct voting, but suc-
cess with contextual voting. Figure17 shows other results
of Figure 16(c)’s case. Due to many ambiguous features
on the cluttered background, the direct voting method la-
bels the wrong object. However, the context-based voting
method can reduce the effect of those cluttered features by
neighboring contextual information.

Finally, we evaluated contextual and direct voting us-
ing the CMU database. This database is composed of 110
separate objects and 25 background images. We generated
test images by changing objects’ sizes on different back-
grounds. This is equivalent to changing the background

Figure 17.Correct detection using contextual voting (failure cases
using direct voting).
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Figure 18.As the area of background clutter increases, contextual
voting shows relatively higher detection accuracy than direct vot-
ing.

size. Figure18 shows the evaluation results. Contextual
voting shows an equal or better recognition rate than direct
voting. Note that the neighboring contextual information
has a more important role for object labeling in a severely
cluttered background than in a less cluttered background.

6. Conclusions

In this paper, we propose a biologically motivated vi-
sual part selection method that extracts complementary vi-
sual parts. In addition, we propose a general contextual
descriptor that encodes multi-cue information in a unified
form. Recognition performance was improved by using the
proposed feature. We also propose a simple and power-
ful object recognition method based on neighboring con-
textual information. Neighboring contextual information
suppresses the strength of background features and en-
hances the strength of figural features in the feature-label
map. The proposed method shows better recognition perfor-
mance than other methods in a severe environment. We will
extend the context-based voting method for general object-
based image understanding such as labeled figure-ground
segmentation.
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