Minimal symmetric Darlington synthesis

Abstract : We consider the symmetric Darlington synthesis of a p x p rational symmetric Schur function S with the constraint that the extension is of size 2p x 2p. Under the assumption that S is strictly contractive in at least one point of the imaginary axis, we determine the minimal McMillan degree of the extension. In particular, we show that it is generically given by the number of zeros of odd multiplicity of I-SS*. A constructive characterization of all such extensions is provided in terms of a symmetric realization of S and of the outer spectral factor of I-SS*. The authors's motivation for the problem stems from Surface Acoustic Wave filters where physical constraints on the electro-acoustic scattering matrix naturally raise this mathematical issue.
Type de document :
Article dans une revue
Math. Control Signals Syst., Springer, 2007, 19, pp.283-311. 〈10.1007/s00498-007-0020-x〉
Liste complète des métadonnées
Contributeur : Martine Olivi <>
Soumis le : mardi 3 mai 2011 - 17:25:31
Dernière modification le : jeudi 11 janvier 2018 - 16:41:02
Document(s) archivé(s) le : jeudi 4 août 2011 - 03:23:21


Fichiers produits par l'(les) auteur(s)




Laurent Baratchart, Per Enqvist, Andrea Gombani, Martine Olivi. Minimal symmetric Darlington synthesis. Math. Control Signals Syst., Springer, 2007, 19, pp.283-311. 〈10.1007/s00498-007-0020-x〉. 〈inria-00590547〉



Consultations de la notice


Téléchargements de fichiers