J. M. Bardsley and J. Goldes, Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation, Inverse Problems, vol.25, issue.9, 2009.
DOI : 10.1088/0266-5611/25/9/095005

M. Bertero, P. Boccacci, G. Talenti, R. Zanella, and L. Zanni, A discrepancy principle for Poisson data, Inverse Problems, vol.26, issue.10, p.26, 2010.
DOI : 10.1088/0266-5611/26/10/105004

I. Csiszár, Why least squares and maximum entropy? The Annals of Statistics, pp.2032-2066, 1991.

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum Likelihood from Incomplete Data via the EM Algorithm, Journal of the Royal Statistical Society. Series B (Methodological), vol.39, issue.1, pp.1-38, 1977.

F. Dupé, J. Fadili, and J. Starck, A Proximal Iteration for Deconvolving Poisson Noisy Images Using Sparse Representations, IEEE Transactions on Image Processing, vol.18, issue.2, pp.310-321, 2009.
DOI : 10.1109/TIP.2008.2008223

M. A. Figueiredo and J. M. Bioucas-dias, Restoration of Poissonian Images Using Alternating Direction Optimization, IEEE Transactions on Image Processing, vol.19, issue.12, pp.3133-3145, 2010.
DOI : 10.1109/TIP.2010.2053941

K. Lange and R. Carson, EM reconstruction algorithms for emission and transmission tomography, Journal of Computer Assisted Tomography, vol.8, issue.2, pp.306-316, 1984.

L. B. Lucy, An iterative technique for the rectification of observed distributions, The Astronomical Journal, vol.79, issue.6, pp.745-765, 1974.
DOI : 10.1086/111605

N. Pustelnik, C. Chaux, and J. Pesquet, Hybrid regularization for data restoration in the presence of Poisson noise, 17th European Signal Processing Conference, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00621941