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Abstract

We present a general mathematical framework
for electromagnetic Particle-In-Cell (PIC) codes that
can be used on structured as well as unstructured
or hybrid grids using an exact sequence of conform-
ing Finite Element spaces for the different compo-
nents of the electromagnetic field. The structure of
the Maxwell solver enables us to derive an exact dis-
crete version of the continuity equation which gen-
eralized the charge conserving method of Villasenor
and Buneman [2] on this kind of grids. The method
has been implemented in 2D and 3D.

Introduction

Many important applications like nuclear fusion,
microwave devices like klystrons, or particle accel-
erators rely on the numerical simulation of charged
particles interacting non linearly with each other
through the self-consistent electromagnetic field they
generate. A mathematical model well suited for
the description of these phenomena is the Vlasov-
Maxwell model and the method, which has been the
most often used for its discretization is the Particle-
In-Cell method [1]. This method relies on the approx-
imation of the Vlasov equation by a particle method
coupled with the solution of Maxwell’s equation on
a grid often performed with the standard Yee algo-
rithm. For charged particle applications it is essential
that Gauss’ law div E = p remains well approximated
throughout the simulation. For this reason, one can-
not merely rely on the solution of Maxwell’s equa-
tion using Ampere’s and Faraday’s laws on their own.
This can be done only if the scheme satisfies exactly
an approximation charge conservation law. Such a
method has been introduced for uniform cartesian
grids and Yee’s algorithm by Villasenor and Bune-
man [2]. Note that when this exact discrete charge
conservation law is not available, one can still use a
correction scheme in the Maxwell solver for most ap-
plications, but in some applications like laser-plasma
interaction a local charge conservation is essential.

Developing new efficient and reliable Maxwell
solvers has been an area of intense research in the

last 40 years and a good understanding of the rea-
sons why some solvers work well and other do not
has only been achieved recently with the concept of
discrete differential forms (see [3] for a review). The
Yee scheme fits into this framework, but one can also
define different classes of conforming Finite Element
Spaces of arbitrary orders on structured and unstruc-
tured grids that fit in the same framework, which can
also be used to derive an exact discrete charge con-
servation law. This is the aim of this presentation.
For the sake of simplicity, all the constructions shall
be presented in 2D, but they can be extended in a
straightforward matter to 3D.

1 The 2D Time Domain Vlasov-Maxwell
System
The charge conservation issue only depends in 2D
on the (E,, Ey, B;) components of the electromag-
netic field that satisfy

1
OE —cfcurlB = ——J (1)
€0
OB +curlE = 0 (2)
e = 2 (3)
€0

where E = (E,, E,)T and B = B, denote the rele-
vant components of the electric and magnetic fields.
These are the unknowns of the system, whereas
J = (Jz, J,)T and p respectively denote given current
and charge density, seen as sources. As usual, the
vector and scalar curl operators are given in 2D by
curl o := (9yp, —0,0)T and curl p := dy0y — Dyps.

In the Vlasov model, the state of the plasma is
represented by a time dependent distribution func-
tion f which, at any time ¢, is defined on the phase
space 1 := {(x,v) € Q x R?} consisting in all pos-
sible (physical) positions x = (x,y) and velocities
v = (vg,vy) for the particles. For simplicity we shall
only consider the evolution of one species of parti-
cles (namely, electrons) and assume the presence of
a neutralizing uniform background ion distribution.
The non relativistic Vlasov equation reads

8tf+v~fo+%F-va:0, (4)



where ¢, m denote the charge and mass of an electron,
and where the force term is given by the Lorentz
law, i.e., F:= E+v x B = (E; + v,B, E, — v, B)T,
which yields a first coupling between the Maxwell
and Vlasov equations.

The following equivalence, which is well known, is
at the heart of our study. Given Ampere’s law (1),
the following properties are equivalent:

(i) Gauss’ law (3) is satisfied at any time ¢,

(ii) Gauss’ law (3) is satisfied at the initial time,
and the sources p, J satisfy a charge conservation
property (also called continuity equation)

2 The variational formulations
It reads: find E and B, such that E(0) = Eg
H(curl) and B(0) = By € L%, with divEq = o

&
and such that for almost every ¢ in (0,7"), we have

°lem
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/ngatE(t)—c /QB(t)curlcp— €0 /Qcp J(t)
Ve € Ho(curl), (6)

/watB(t)—l—/wcurlE(t):O v e L2, (7)
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Since the domain €2 is assumed polygonal and sim-
ply connected, we know that as long as the sources
p € CYHO,T;L*(Q)), J € CY0,T;L3(%)) satisty
the charge conservation property (5), there exists
a unique solution to this variational formulation.
Moreover the variational formulation of Gauss’ law
(8) needs only to be satisfied at ¢ = 0 in order to be
satisfied at all times.

This property is also verified by the discrete vari-
ational formulation provided the three discrete func-
tion spaces share the same property as their inifinite
dimensional counterparts, namely the exact sequence

property.

rad 1
H} &5 Ho(curl) &5 L2,

meaning  that grad(H}) C H(curl),
ker(curl | g, (curty) = grad(Hg) and curl(Ho(curl)) C
L.

There are well known conforming approximations
of these spaces of arbitrary order that satisfy this

property as well on triangles as on quads, and they
are naturally conforming on hybrid meshes of tri-
angles and quads. These spaces have been de-
fined by Nédélec [4]. Let us recall their form on
quads: Qg gives the conforming approximation of
H&, Qr—1,k X Qg x—1 gives the conforming approxi-
mation of H(curl) and Q_1 gives the conforming
approximation of L2.

3 Discrete continuity equation

In order to have an exactly charge conserving dis-
crete formulation there remains to find an exact dis-
crete formulation of the continuity equation.

In a PIC method the distribution function and
hence the charge and current densities p and J are
approximated by a sum of Dirac masses. In the Fi-
nite Difference context these approximations need to
be regularized in order to be able to define p and J
at the points where they are needed. In the context
of Finite Elements, these regularization is naturally
performed by the variational formulations. Hence we

define
N, part

pR(x) == wpd(x — x}),
k=1

Npart

o1 ntl 1 tnt1

J, 2 (x) = wyvy ° AL / d(x — xx(t))dt,
k=1 tn

with x(t)) = XJ + (¢ — o)V T2

of the particles.

Then putting these expressions in the discrete vari-
ational formulations, we can prove that the discrete
Gauss law remains satisfied at all times if it is satis-
fied at time ¢t = 0.

, and wy the weight
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