Inferring Affordances Using Learning Techniques

Abstract : Interoperability among heterogeneous systems is a key challenge in today's networked environment, which is characterised by continual change in aspects such as mobility and availability. Automated solutions appear then to be the only way to achieve interoperability with the needed level of flexibility and scalability. While necessary, the techniques used to achieve interaction, working from the highest application level to the lowest protocol level, come at a substantial computational cost, especially when checks are performed indiscriminately between systems in unrelated domains. To overcome this, we propose to use machine learning to extract the high-level functionality of a system and thus restrict the scope of detailed analysis to systems likely to be able to interoperate.
Type de document :
Communication dans un congrès
International Workshop on Eternal Systems (EternalS'11), May 2011, Budapest, Hungary. 2011, 〈10.1007/978-3-642-28033-7_7〉
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger
Contributeur : Amel Bennaceur <>
Soumis le : mercredi 1 juin 2011 - 12:06:14
Dernière modification le : vendredi 25 mai 2018 - 12:02:02
Document(s) archivé(s) le : vendredi 2 septembre 2011 - 02:21:08


Fichiers produits par l'(les) auteur(s)




Amel Bennaceur, Johansson Richard, Moschitti Alessandro, Spalazzese Romina, Daniel Sykes, et al.. Inferring Affordances Using Learning Techniques. International Workshop on Eternal Systems (EternalS'11), May 2011, Budapest, Hungary. 2011, 〈10.1007/978-3-642-28033-7_7〉. 〈inria-00591264〉



Consultations de la notice


Téléchargements de fichiers