Inferring Affordances Using Learning Techniques

Abstract : Interoperability among heterogeneous systems is a key challenge in today's networked environment, which is characterised by continual change in aspects such as mobility and availability. Automated solutions appear then to be the only way to achieve interoperability with the needed level of flexibility and scalability. While necessary, the techniques used to achieve interaction, working from the highest application level to the lowest protocol level, come at a substantial computational cost, especially when checks are performed indiscriminately between systems in unrelated domains. To overcome this, we propose to use machine learning to extract the high-level functionality of a system and thus restrict the scope of detailed analysis to systems likely to be able to interoperate.
Type de document :
Communication dans un congrès
International Workshop on Eternal Systems (EternalS'11), May 2011, Budapest, Hungary. 2011, 〈10.1007/978-3-642-28033-7_7〉
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00591264
Contributeur : Amel Bennaceur <>
Soumis le : mercredi 1 juin 2011 - 12:06:14
Dernière modification le : mercredi 14 décembre 2016 - 01:06:01
Document(s) archivé(s) le : vendredi 2 septembre 2011 - 02:21:08

Fichier

fet2011.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Amel Bennaceur, Johansson Richard, Moschitti Alessandro, Spalazzese Romina, Daniel Sykes, et al.. Inferring Affordances Using Learning Techniques. International Workshop on Eternal Systems (EternalS'11), May 2011, Budapest, Hungary. 2011, 〈10.1007/978-3-642-28033-7_7〉. 〈inria-00591264〉

Partager

Métriques

Consultations de la notice

235

Téléchargements de fichiers

221