
HAL Id: inria-00591264
https://inria.hal.science/inria-00591264

Submitted on 1 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inferring Affordances Using Learning Techniques
Amel Bennaceur, Johansson Richard, Moschitti Alessandro, Spalazzese

Romina, Daniel Sykes, Rachid Saadi, Valérie Issarny

To cite this version:
Amel Bennaceur, Johansson Richard, Moschitti Alessandro, Spalazzese Romina, Daniel Sykes, et
al.. Inferring Affordances Using Learning Techniques. International Workshop on Eternal Systems
(EternalS’11), May 2011, Budapest, Hungary. �10.1007/978-3-642-28033-7_7�. �inria-00591264�

https://inria.hal.science/inria-00591264
https://hal.archives-ouvertes.fr

Inferring Affordances Using Learning Techniques

Amel Bennaceur1, Richard Johansson2, Alessandro Moschitti2, Romina Spalazzese3,
Daniel Sykes1, Rachid Saadi1, Valérie Issarny1

1INRIA Paris-Rocquencourt, France
2University of Trento, Italy

3University of L’Aquila, L’Aquila, Italy

ABSTRACT
Interoperability among heterogeneous systems is a key chal-
lenge in today’s networked environment, which is charac-
terised by continual change in aspects such as mobility and
availability. Automated solutions appear then to be the only
way to achieve interoperability with the needed level of flex-
ibility and scalability. While necessary, the techniques used
to achieve interaction, working from the highest application
level to the lowest protocol level, come at a substantial com-
putational cost, especially when checks are performed in-
discriminately between systems in unrelated domains. To
overcome this, we propose to use machine learning to ex-
tract the high-level functionality of a system and thus re-
strict the scope of detailed analysis to systems likely to be
able to interoperate.

1. INTRODUCTION
We live in a world populated by highly heterogeneous, net-

worked, mobile and pervasive systems and services. Such
heterogeneity may span the application layer, the middle-
ware layer, and the underlying communication infrastruc-
ture. Interaction between these systems, where feasible, is
customarily achieved through diverse ad hoc means for spe-
cific pairs of systems in a particular environment. Principled
automatic composition can bring a labour-saving benefit–
through generalisation over classes of systems–and can pro-
vide the flexibility needed to cope with rapidly changing
contexts, dynamic service availability and user mobility.

Automatic service composition has three main phases:
discovery of what services exist in the current scope; find-
ing pairs or sets of services which are compatible, so as to
make composition possible; and the actual process of con-
necting one system to another. The second step of finding
matching pairs of systems can be a computationally costly
procedure, both in terms of the number of combinations of
systems which have been discovered, but also in terms of the
deep behavioural (or protocol) analyses used to determine if
a single pair is compatible.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FET 2011
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Hence it is unreasonable to perform matching with all
systems every time a new system is discovered. Indeed,
detailed matching between heterogeneous systems working
in wildly different application domains is nonsensical: the
word processor on a traveller’s laptop need not be compared
against the air-traffic control infrastructure simply because
he is situated inside the airport. On the other hand, match-
ing against a document translation service may in fact be of
some use.

What is required is a notion of category of systems; things
that speak about the same domain. Then matching can be
restricted to combinations falling within a given category.
For this purpose, we define an affordance which represents
the high-level functionality (capability) of a given system
with reference to an ontology which specifies the domain of
interest. A system may have several affordances, represent-
ing different facets of its functionality, each of which may
even relate to a different domain.

In addition to restricting the scope of matching, affor-
dances can further increase the efficiency of composition by
exploiting a structured repository wherein system descrip-
tions are stored according to the matching relation. Struc-
turing the repository in this manner reduces the number of
comparisons which need to be made when a new system is
discovered, even within a given domain. Figure 1 illustrates
the linear speed up of matching when affordances are used.

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

&#!!"

$" $!" %!" &!" '!"

!"
#
$%
&'
%#

()
*+
",
-%
./
$*
&,

01
%

23#4$5%&'%/$56"*$/%

()*+,-*"./,012345"

()*+"./,012345"

62)3"7)85"

Figure 1: Time of Matching with and witout using
Affordances

These benefits can only be reaped, however, when all
systems are annotated with their respective affordances: a
substantial effort for the great numbers of legacy systems,
which provide only their interface description. However, it is
worthwhile considering what process the programmer may
go through when assigning an affordance. Given a set of
“universally” agreed concepts in the ontology, the program-
mer can examine the interface and its documentation to de-

termine which concepts best describe the broad category and
functionality of the system. It goes without saying that to
achieve this, the natural language descriptions and identi-
fiers (such as method names) present in the interface will be
used to make the classification.

We propose to use machine learning to automate the ex-
traction of affordances from the interface description by clas-
sifying the natural-language text according to a pre-defined
ontology of systems. Such an approach can fill the gap when
a discovered system does not have a programmer-assigned
affordance.

In the following, we set out in more detail the context of
our problem, focussing on services, and discuss techniques
that may be used to realise the approach.

2. AUTOMATIC SERVICE COMPOSITION
To compose services automatically we can make use of a

theory [5] for the automated synthesis of mediating connec-
tors (also called mediators) that has been defined elsewhere
[1]. That is, the service composition problem can be seen
as an instance of the kind of problems the theory is able to
model and solve.

More specifically, to compose services we need to: (i) dis-
cover the available ones, (ii) find matching pairs among
them, and (iii) synthesise mediators that adapt the services
behaviours allowing them to interoperate.

Our approach to dynamic service composition and inter-
operability is illustrated in Figure 2.

Adaptation

Exact matchingPartial Matching
No Matching

Mediator Synthesis

Interface

Non-Functional Properties

Affordance

Behavior

Networked System (NS1)

Interface

Non-Functional Properties

Affordance

Behavior

Networked System (NS2)

Yes

Domain-specific
Ontology

1

2

3

Mediator

4

Semantic Matching

Behavioral Matching

Failure

Figure 2: Approach to dynamic interoperability

Two descriptions of networked systems (NSs) are given,
including their interface, behaviour, non-functional proper-
ties and affordance descriptions. The first step consists of
checking the compatibility of their affordances, high-level
functionality, through the use of semantic matching (¶).
Then, in the successful cases, a behavioural matching (·)
is performed by reasoning about both the NSs descriptions
and the ontologies characterising their actions. In the case
of exact behavioural matching, a mediator is synthesised (¸)
based on the results of the reasoning in the previous step,
while in the case of partial matching, a protocol adaptation
(¹) is needed before the mediator synthesis. This process
highlights the central role of the semantic matching of affor-
dances in reducing the overall computation by acting as a
kind of filter for the subsequent behavioural matching.

2.1 Affordances

An affordance denotes a high-level functionality provided
to or required from the networked environment. Concretely,
an affordance is specified as a tuple:

Aff = 〈Type, F, I, O〉

where:

• Type stands for a required (noted Req), provided (noted
Prov) or required and provided (noted Req Prov) af-
fordance.

• F gives the semantics of the functionality associated
with the affordance in terms of an ontology concept.

• I (resp. O) specifies the set of inputs (resp. outputs) of
the affordance, which is defined as a tuple 〈i1, ..., in〉
(resp. 〈o1, ..., om〉) with each il (resp. ok) being an
ontology concept.

For example, 〈Prov,AuctionHouse, 〈Goods〉 , 〈Money〉〉 is
an affordance describing the provision of AuctionHouse func-
tionality with an input of Goods and an output of Money.

The first step in identifying the possible compatibility of
two networked systems is to assess whether they respectively
provide and require semantically matching affordances. For
example, a Procurement application, being a kind of Buyer,
may match the above AuctionHouse, as a specific kind of
Seller. Once a functional match is found at the affordance
level, the more costly behavioural and non-functional match-
ing can be performed.

2.2 Legacy applications
Unfortunately, legacy applications do not normally pro-

vide affordance descriptions. We must therefore rely upon
an engineer to provide them manually, or find some auto-
mated means to extract the probable affordance from the
interface description. Note that it is not strictly necessary to
have a guaranteed correct affordance since falsely-identified
matches will be caught in the subsequent detailed checks.

In this paper we focus on using machine learning to ex-
tract affordances from interface descriptions. Moreover we
focus on the functional concept F of the affordance, rather
than the inputs and outputs, though the overall approach
would be notionally unchanged. Learning the inputs and
outputs would require a straightforward division of the in-
terface into parts which refer to data and those which refer
to the functionality, and performing the learning procedure
on each independently.

3. AFFORDANCE LEARNING
This section provides an example interface description to

bring the affordance learning problem into focus.

3.1 Typical interface
Listing 1 shows a small fragment of the WSDL interface

description of the popular eBay [2] web service.

Listing 1: Ebay WSDL interface description
<!−− Cal l : AddItem −−>
<xs : element name=”AddItemRequest ”

type=”ns : AddItemRequestType”/>
<xs :complexType name=”AddItemRequestType”>

<xs : annotation>
<xs :documentation>

Def ines a s i n g l e new item and l i s t s i t
on a s p e c i f i e d eBay s i t e .
 Also f o r Hal f . com.
Returns the item ID f o r the new l i s t i n g ,
and r e tu rn s f e e s the s e l l e r w i l l i ncur f o r
the l i s t i n g (not i n c l ud ing the Fina l Value
Fee , which cannot be c a l c u l a t ed un t i l the
item i s so ld) .

</xs :documentation>
<xs : appinfo>
<RelatedCalls>

AddFixedPriceItem , AddItems ,
AddToItemDescription , GetItem ,
GetItemRecommendations , Ge tSe l l e rL i s t ,
Re l i s t I tem , ReviseItem ,
VerifyAddItem

</RelatedCalls>
<SeeLink>

<Title>L i s t i n g an Item</Title>
<URL>http :// deve loper . ebay . com/. . . </URL>

</SeeLink>
<SeeLink>

<Title>L i s t i n g Items</Title>
<URL>http :// deve loper . ebay . com/. . . </URL>

</SeeLink>

This example provides extensive English text in both the
documentation and the terms used in message and type
names. Note that the complete description is approximately
130k lines long. In order to handle less verbose descrip-
tions, documentation acquired from alternative sources such
as http://webservices.seekda.com/ can be used. It would
not take an engineer, or indeed a layperson, long to deter-
mine the approximate purpose of the service, relying on key
words such as ‘item’, ‘seller’ and ‘fee’. A concept from a pre-
determined ontology, such as AuctionHouse, could then be
assigned. Given such a description we propose to use ma-
chine learning to infer the appropriate affordance for the
service.

3.2 Learning problem
The problem we are considering, then, is to find a function

f which, given a parsed interface description with only the
natural-language terms remaining, determines with some
confidence the concept most appropriate for that service:

f : Interface → (Concept× Confidence)

To achieve this, we provide a number of examples as train-
ing data relating interfaces to concepts: Interface×Concept.
These examples are acquired by searching for web service de-
scriptions in online repositories, e.g., webservicelist.com

and xmethods.com, and manually assigning to each a con-
cept. The learning technique employed should then be able
to generalise from the examples to produce an f to classify
new examples. It is necessary to have a number of example
interfaces for each concept we wish to assign to services.

Note that the problem could be tackled at (at least) two
levels of granularity: the concepts could indicate the broad
category of service within a “universal” ontology (taxon-
omy), or they could indicate a more specific service type
within an ontology restricted to a specific domain. The
learning problem is the same for both; all that changes is
the breadth of automation we can achieve versus the depth
of the domain. Arbitrarily increasing the breadth and depth
of the ontology will impact confidence as it becomes increas-
ingly likely that concepts are ambiguous.

4. POTENTIAL SOLUTION: MACHINE
LEARNING OF CATEGORISERS

We believe that the problem of affordance learning can
draw many lessons from the long tradition of research in text
categorisation: the problem of assigning a given document
to one or more categories. The complexity of the system of
categories may be low in some cases, such as a binary set
{Positive, Negative} when classifying a customer review
as positive or negative [12], and higher in other cases, such as
the various structured classification systems used in library
science. The main tool for implementing modern systems
for automatic document classification systems is machine
learning based on vector space document representations.

4.1 Introduction to machine learning
In general, we define machine learning as the problem of

inducing a function (or system of functions) from a given
data set. We may discern two main strands of machine
learning methods: supervised and unsupervised methods.

The most archetypical problem setting in machine learn-
ing is the supervised setting. In supervised learning, the
learning mechanism is provided with a (typically finite) set
of labelled examples: a set of pairs T = {〈x, y〉}. The goal
is to make use of the example set T to induce a function
f such that generally f(x) = y for future, unseen instances
of (x, y) pairs. Supervised learning methods in most cases
learn much more accurate classifiers than their unsupervised
counterparts, but require a human-annotated training set
of significant size: the bigger the better. Examples of su-
pervised learning methods commonly used include Support
Vector Machines [3], which have been extensively studied for
the problem of text categorisation [6]. For the problem of
automatic association of WSDL interface descriptions with
concepts, we thus need to gather a large set of interface
descriptions and manually assign one or more concepts to
every description.

As opposed to the supervised setting, the problem defini-
tion in unsupervised learning instead assumes the examples
to be unlabelled, i.e. T = {x}. In order to be able to
come up with anything useful when no supervision is pro-
vided, the learning mechanism needs a bias that guides the
learning process. The most well-known example of unsu-
pervised learning is probably k-means clustering [8], where
the learner learns to categorise objects into broad categories
even though the categories were not given a priori. More
complex examples include grammar induction methods from
raw text.

In addition to two main subfields of learning methods
there are of course outliers and hybrids, such as semisu-
pervised learning: Since it is costly to produce manually
labelled training data, in some situations only a small la-
belled example set Ts = {〈x, y〉} is provided, while there
is also available a larger unlabelled example set Tu = {x}.
Semisupervised learning methods are able to make use of the
labelled data Ts in combination with the unlabelled data Tu

in order to improve over a plain supervised learner mak-
ing use of Ts only. Another interesting learning paradigm
is active learning, where the learning mechanism is able to
select particularly informative unlabelled examples from an
unlabelled dataset and ask an oracle (a human annotator or
some sort of automatic mechanism) for a labelling. Typi-
cally, active learners are able to achieve a more efficient use
of the training data than normal supervised learners, since

their behaviour is more targeted towards distinguishing the
difficult cases.

4.2 Representations for categorisation
In order to be able to apply standard supervised or un-

supervised machine learning methods for building categoris-
ers, we need to represent the objects we want to classify by
extracting informative features. For categorisation of docu-
ments, the standard representation method maps every doc-
ument into a vector space using the bag-of-words approach
[13]. In this method, every word in the vocabulary is associ-
ated with a dimension of the vector space, allowing the doc-
ument to be mapped into the vector space simply by com-
puting the occurrence frequencies of each word. The bag-
of-words representation is considered the standard represen-
tation underlying most document classification approaches,
and attempts to incorporate more complex structural infor-
mation have mostly been unsuccessful for the task of cate-
gorisation of single documents [10] although more successful
for complex relational classification tasks [9].

However, the task of classifying WSDL interface descrip-
tions is different from classifying raw documents: the inter-
face descriptions are semi-structured rather than unstruc-
tured, and the representation method clearly needs to take
this fact into account, for instance by separating the vector
space into regions representing the respective parts of the
WSDL description. For instance, the description in Figure
1 contains a general documentation part in free text, as well
as a number of textual descriptions of the methods defined
by the interface.

In addition to the text, we believe that the various semi-
structured identifiers should be included in the feature repre-
sentation, most importantly the names of the methods de-
fined by the interface but also the methods listed in the
RelatedCalls section. The inclusion of identifiers will be
important since 1) the textual content of the identifiers is
often highly informative of the functionality provided by
the respective methods; 2) the free text documentation is
not mandatory and may not always be present. Extracting
useful bag-of-words representations from the identifiers will
likely have to use splitting heuristics relying on the presence
of indicators such as underscores or CamelCase.

5. CONCLUSIONS
Principled automatic composition is the only means to

overcome the manifold difficulties inherent in the problem of
interoperability of diverse, heterogeneous systems. In con-
trast to incidental ad hoc solutions, automatic composition
brings such benefits as scalability, self-adaptation, flexibil-
ity, resilience to faults, and tolerance of dynamic availability
and user mobility. Affordances are the first weapon in at-
tacking the problem, by categorising systems and so avoid-
ing unnecessarily deep checks on systems whose high-level
functionality is utterly different.

Affordances need not be especially precise—we are not
looking for a surgical strike—since the detailed work is han-
dled by behavioural and other compatibility checks. For
this reason we are able to take advantage of machine learn-
ing to provide us with affordances when they have not been
provided by the programmer. Techniques such as support
vector machines can categorise free text according to a pre-
defined ontology of systems, however it may be beneficial to
treat the WSDL interface description as a semi-structured

document, by, for example, separating method, input and
output identifiers from pure documentation.

In addition to experimenting with different categorisers
and the structure of the input, the provision and the gener-
ality of the ontology of systems poses a challenge. While we
do not wish to limit the scope of the approach to a partic-
ular domain, having overly general concepts will again lead
to unnecessary deep compatibility checks.

A number of similar approaches exist, particularly in the
field of web services, such as [11, 7, 4], from which we can
draw guidance. However, their aims and context often differ.
In our case, the extraction of an affordance to categorise sys-
tems promises to bring such benefits as well-targeted com-
patibility checking, efficient storage of descriptions, and a
potential for decentralisation.

Acknowledgments.
This work is done as part of the European FP7 ICT FET
CONNECT project (http://connect-forever.eu/).

6. REFERENCES
[1] CONNECT Annex I: Description of Work. FET IP

CONNECT EU project, FP7 grant agreement number
231167, http://connect-forever.eu/.

[2] eBay WSDL. http://developer.ebay.com/
webservices/latest/ebaySvc.wsdl.

[3] B. Boser, I. Guyon, and V. Vapnik. A training
algorithm for optimal margin classifiers. In
Proceedings of the Fifth Annual Workshop on
Computational Learning Theory, 1992.

[4] A. Heß and N. Kushmerick. Learning to attach
semantic metadata to web services. In ISWC, pages
258–273, 2003.

[5] P. Inverardi, V. Issarny, and R. Spalazzese. A theory
of mediators for eternal connectors. In ISoLA, 2010.

[6] T. Joachims. Learning to Classify Text Using Support
Vector Machines. Kluwer Academic Publishers, 2002.

[7] M. Klusch, P. Kapahnke, and I. Zinnikus. Sawsdl-mx2:
A machine-learning approach for integrating semantic
web service matchmaking variants. In ICWS, 2009.

[8] J. MacQueen. Some methods for classification and
analysis of multivariate observations. In Proceedings of
5th Berkeley Symposium on Mathematical Statistics
and Probability, 1967.

[9] A. Moschitti. Kernel methods, syntax and semantics
for relational text categorization. In Proc. of CIKM,
2008.

[10] A. Moschitti and R. Basili. Complex linguistic features
for text classification: A comprehensive study. In
Proc. of ECIR, 2004.

[11] N. Oldham, C. Thomas, A. P. Sheth, and K. Verma.
Meteor-s web service annotation framework with
machine learning classification. In SWSWPC, 2004.

[12] B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up?
Sentiment classification using machine learning
techniques. In Proceedings of the 2002 Conference on
Empirical Methods in Natural Language Processing,
2002.

[13] G. Salton, A. Wong, and C. S. Yang. A vector space
model for automatic indexing. Technical Report
TR74-218, Cornell University, 1974.

