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ABSTRACT

Results of the application of optical flow methods to eye-
safe aerosol lidar images leading to dense velocity field
estimations are presented. A fluid motion dedicated for-
mulation is employed, taking into account the deform-
ing shapes and changing brightness of flow visualization.
The optical flow technique has the advantage of provid-
ing a vector at every pixel in the image, hence enabling
access to improved multiscale properties. In order to as-
sess the performances of the method, we compare vectors
with punctual sonic anemometer measurements. Power
spectra of the velocity data are also calculated to explore
the spectral behavior of the technique.

1. INTRODUCTION

The determination of air motion vectors from images
produced by scanning aerosol lidars has previously been
accomplished by computing cross-correlation functions
from two or more frames in time [1]. For a spatially
resolved vector flow field, the correlation functions can
be computed for sub-regions of the full images [2]. Al-
though being fast and robust, those methods produce
sparse vector fields and it is a challenge to obtain infor-
mation near the edges of the scan area. In this new work,
we apply an optical flow algorithm to calculate dense mo-
tion vectors from scanning eye-safe aerosol lidar images.
Optical flow technics have been proposed in the computer
vision domain in order to infer scene motion measure-
ments. Dense motion vectors are routinely computed for
machine vision, digital video compression, and camera
surveillance. Recently, optical flow has also been applied
to images of fluid motion [3, 4, 5]. This is a more chal-
lenging problem than the case of tracking solid objects
because the features related to the flow visualization typ-
ically have deforming shapes and changing brightness.
In order to tackle this difficulty, appropriate smoothing
functions on the velocity field and sound variation mod-
els linking the velocity unknown to the image luminance
variation have to be proposed. This paper is a companion
to the one by S. D. Mayor [6] in the same conference.
Details about the lidar, the experiment, and the vectors
computed via the correlation method can be found in that
paper.

2. OPTICAL FLOW METHODS

2.1. Standard formulation

Optical-flow estimation aims at recovering the apparent
displacement field w = (u, v)T between two consecutive

frames in an image sequence. This classical computer-
vision problem is solved through the minimization of
some energy function J = Jobs + Jreg , initially formu-
lated by Horn & Schunck [7]. The first term Jobs con-
stitutes a data model that links the displacement field to
be estimated to information from image pairs through the
optical-flow constraint (OFC). This constraint states that
luminance f(s, t) at a given point s ∈ Ω remains constant
along its trajectory: df(s,t)

dt
= 0. The data model enforces

this behavior through the following cost function:

Jobs(w) =

∫

Ω

φ

(

∇f(s).w(s) +
∂f(s)

∂t

)

ds (1)

where φ might be the L2 norm or some robust function
to deal with strong deviation from the OFC data-model.
The second term Jreg is a regularization term, classically
a first order penalization is used:

Jreg(w) = α

∫

Ω

φ (‖∇w‖) ds (2)

Here parameter α controls the balance of the OFC data-
model and the smoothness of the estimated field w.

2.2. Fluid motion estimation

The two terms of the energy function J have been mod-
ified in order to take into account physical properties of
the fluid motion. The OFC constraint (1) has been re-
placed by the integrated continuity equation (ICE), based
on mass conservation [8]:

Jobs(w) =

∫

Ω

φ

(

∂f(s)

∂t
+ div(f(s)w)

)

ds (3)

The first-order regularization (2) penalizes the gradient
of the estimated field w and enforces low divergence and
vorticity. A second order regularization has been pro-
posed [3] which instead penalizes gradients and favors
blobs of both vorticity and divergence :

Jreg(w) = α

∫

Ω

φ (‖∇curlw‖ + ‖∇divw‖) ds (4)

where curlw = ∂v
∂x

− ∂u
∂y

and divw = ∂u
∂x

+ ∂v
∂y

respec-
tively denote vorticity and divergence of w. Those modi-
fications have proven to be efficient for fluid motion esti-
mation in various cases such as particle image velocime-
try (PIV) or satellite imagery [3, 4].



Figure 1: Example of input image data for dense motion esti-
mation .

3. APPLICATION TO LIDAR IMAGES

3.1. Experiment

Data was collected by a 1.5 µm eye-safe aerosol lidar as a
part of the 2007 CHATS measurement campaign, which
also includes in-situ measurements recorded at a 60 Hz
sample rate from a micro-meteorological tower located
within the lidar scan plane. More information on the li-
dar, this experiment and its results can be found in pa-
pers by S.D. Mayor [9, 10]. Preprocessing of raw data –
such as interpolation from polar to cartesian coordinates
– leads to 602 × 602 px frames of 10 m resolution. Each
frame has an associated mask describing the cone-shaped
data area – see fig. 1. This mask enables the discarding
of irrelevant pixels for the estimation process.

Optical flow methods have been applied to two different
lidar data cases. These two cases were chosen because
of their sharply contrasting differences in flow dynamics.
The case from April 26 took place in a turbulent convec-
tive boundary layer and included the passage of a den-
sity current front; the case from March 21 occurs in a
weakly stable evening boundary layer with light winds.
In this case, stability suppresses turbulence and supports
the existence of “gravity” waves. In the March 21 case
the wind speeds are low and the wind direction is con-
stantly changing. In the April 26 case, the wind speeds
are stronger and the direction is more consistent except
for near reversal with the passage of the front.
The March 21 case consists of 536 frames ranging be-
tween 04:15 and 6:59 with a time-step of 17.3 s, while
the April one shows 358 frames from 22:00 to 01:00 on
27 April 2007 with a 30 s-interval between two consecu-
tive frames. Both cases have been investigated using the
same set of parameters:

• ICE data model;

• Div-Curl regularization;

• robust behavior to discard irrelevant pixels;

• no temporal coherence: frames are treated as inde-
pendent consecutive pairs.

The estimated velocity fields have the same resolution as
the input frames, i.e. 602 × 602 px. Figure 2 shows an

example of the estimated vectors with associated vortic-
ity and divergence map. The in-situ measurement tower
is located 1600 m south of the lidar site, and does some-
times appear on the input frame as few bright pixels of
maximum size 2 × 2 px. Thanks to the use of the robust
data term, those pixels are sometimes discarded by the
algorithm. In order to compare tower measurements with
reliable estimated values, the latter are averaged over a
4 × 4 px box centered on the tower location. Tower mea-
surements, originally sampled at 60 Hz, are also averaged
over 15 s-windows centered on the times of the frames.

3.2. Wind Speed and Direction

Figure 3 shows a comparison of wind speed and its direc-
tion between averaged anemometer data and estimated
ones. The first case – March 21 – shows a good agree-
ment between estimation and measurements for both
norm and direction, except for two short periods where
the direction strongly deviated. The second case, April
26, is much more turbulent, with a higher amount of scat-
ter in both anemometer and estimated wind speed. How-
ever, being much more stable, wind direction is well re-
trieved.

3.3. Spectra

Figure 4 represents time-power spectral densities (PSD)
computed using a Welch estimator. Lidar frame rate is
much lower than the anemometer sample rate, hence its
spectra are only defined over low frequencies. Observa-
tions from wind speed comparisons are confirmed: PSDs
are in reasonable agreement for the 21 March case, up
to the lidar Nyquist frequency where a “pile-up” of en-
ergy appears, not present in the anemometer data. Some
energy is also missing at the estimated middle scales
(∼ 10−3 Hz), it might have been caused by a too strong
regularization. For the April 26 “turbulent case”, it ap-
pears that the algorithm under-estimates the PSD over a
broad range of scales, not surprisingly since wind speed
was badly retrieved. Both cases show an inertial cas-
cade with a − 5

3 slope, unfortunately occurring at tem-
poral scales unreachable through lidar frames. Figure
5 shows time-averaged spatial spectra computed from a
256 × 256 px box extracted from the estimated velocity
fields. A power-law fit gives a slope of ∼ −2.

4. CONCLUSION

Optical flow methods with fluid-motion dedicated formu-
lation have been applied to lidar data frames. Results are
in good agreement with in-situ measurements, although
particular dynamics might mislead the algorithm. The de-
velopment of a lidar-dedicated data model combined with
the utilization of turbulence dynamics multiscale regular-
ization [5] should lead to improved dense motion estima-
tions.
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Figure 2: Example of estimated dense field – 26 April, 23:05:41. The close-up (bottom-left) shows two counter-rotating vortices
situated near the northward moving density front; velocity vectors are superimposed every 6 px on the input frame. Up-right is
vorticity map confirming the two vortices, bottom-right is the divergence map showing convergence north of the front.

(a) 21 March 2007 (b) 26 April 2007

Figure 3: Comparison of wind speed (top) and direction (bottom) between anemometer data (red circles) and estimated velocities
with optical flow method (black circles) for 21 March (left column) and 26 April (right column).



(a) 21 March 2007

(b) 26 April 2007

Figure 4: Comparison of time PSDs computed for the 2 data set
from anemometer data (red) and estimated field (black) for U
(top) and V (bottom)

Figure 5: Time-averaged spatial PSD computed from estimated
field (black) for U (top) and V (bottom)
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