Compositional design methodology with constraint Markov chains

Abstract : Notions of specification, implementation, satisfaction, and refinement, together with operators supporting stepwise design, constitute a {specification theory}. We construct such a theory for Markov Chains (MCs) employing a new abstraction of a Constraint MC. Constraint MCs permit rich constraints on probability distributions and thus generalize prior abstractions such as Interval MCs. Linear (polynomial) constraints suffice for closure under conjunction (respectively parallel composition). This is the first specification theory for MCs with such closure properties. We discuss its relation to simpler operators for known languages such as probabilistic process algebra. Despite the generality, all operators and relations are computable.
Type de document :
Communication dans un congrès
QEST 2010, Sep 2010, Williamsburg, Virginia, United States. 2010, 〈10.1109/QEST.2010.23〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00591578
Contributeur : Benoît Delahaye <>
Soumis le : lundi 9 mai 2011 - 15:53:10
Dernière modification le : mercredi 16 mai 2018 - 11:23:05
Document(s) archivé(s) le : mercredi 10 août 2011 - 02:48:27

Fichier

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Benoit Caillaud, Benoît Delahaye, Kim Guldstrand Larsen, Axel Legay, Mikkel L. Pedersen, et al.. Compositional design methodology with constraint Markov chains. QEST 2010, Sep 2010, Williamsburg, Virginia, United States. 2010, 〈10.1109/QEST.2010.23〉. 〈inria-00591578〉

Partager

Métriques

Consultations de la notice

269

Téléchargements de fichiers

87