
HAL Id: inria-00591779
https://inria.hal.science/inria-00591779

Submitted on 16 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cosparse Analysis Modeling
Sangnam Nam, Mike E. Davies, Michael Elad, Rémi Gribonval

To cite this version:
Sangnam Nam, Mike E. Davies, Michael Elad, Rémi Gribonval. Cosparse Analysis Modeling. The
9th International Conference on Sampling Theory and Applications, May 2011, Singapore, Singapore.
�inria-00591779�

https://inria.hal.science/inria-00591779
https://hal.archives-ouvertes.fr


COSPARSE ANALYSIS MODELING

Sangnam Nam1 Michael E. Davies2 Michael Elad3 Rémi Gribonval1
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ABSTRACT

A ubiquitous problem that has found many applications, from

signal processing to machine learning, is to estimate a high-

dimensional vector x0 ∈ Rd from a set of incomplete linear

observations y = Mx0 ∈ Rm. This is an ill-posed problem

which admits infinitely many solutions, hence solving it is hope-

less unless we can use additional prior knowledge on x0.

The assumption that x0 admits a sparse representation z0

in some synthesis dictionary D is known to be of significant

help, and it is now well understood that under incoherence as-

sumptions on the matrix MD, one can recover vectors x0 with

sufficiently sparse representations by solving the optimization

problem:

x̂S := Dẑ; ẑ := arg min
z

‖z‖τ subject to y = MDz (1)

for 0 ≤ τ ≤ 1.

An alternative to (1) which has been used successfully in

practice is to consider the analysis ℓτ -optimization:

x̂A := arg min
x

‖Ωx‖τ subject to y = Mx, (2)

where Ω : Rd → Rp is an analysis operator. Typically the

dimensions are m ≤ d ≤ p, n.

The focus of our work is the study of a data model that makes

possible to identify a collection of signals x0 that can be recov-

ered via the optimization (2). Roughly speaking, in the case of

(1), the signals x0 that are sparse, in other words, satisfy the

sparse synthesis model, can be recovered via (1). In the sparse

synthesis model, we consider the number of the non-zeros ‖z‖0

of the representation z of x0 (meaning that x0 = Dz), and we

say that x0 is sparse if there is a representation z0 of x0 with

small ‖z0‖0. To the contrary, in the case of (2), we are more

interested in the number of the zeros p − ‖Ωx0‖0 of the rep-

resentation Ωx0 of x0. We call the quantity ℓ = p − ‖Ωx0‖0

the cosparsity of x0 and say that x0 is cosparse, or it satisfies

cosparse analysis model, if ℓ is large.

For the cosparse analysis model, we have the following

uniqueness result:
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Proposition 1. Let Ω be an analysis operator in general posi-

tion. Then, for almost all M (with respect to the Lebesgue mea-

sure), a necessary and sufficient condition for (2) with τ = 0 to

have a unique minimum is

m ≥ 2(d − ℓ). (3)

The proposition characterizes the collection of signals that

can be recovered from (2) for the generic case. We also observe

that by comparing with the uniqueness result for the sparse syn-

thesis model, again in generic cases, d− ℓ is playing the role of

the sparsity k = ‖z0‖0.

In the sparse synthesis model, armed with the fact that x0

has a sparse representation, one may try to recover/approximate

x0 by greedily selecting atoms from MD and matching the ob-

servation y. The Orthogonal Matching Pursuit (OMP) is an ex-

ample of such approachs. Similarly, we can consider a greedy

algorithm as an alternative to (2) in the cosparse analysis model.

As such an algorithm, we propose the Greedy Analysis Pursuit

(GAP). In this algorithm, contrary to the greedy algorithms for

the synthesis model, we try to identify the rows of Ω that corre-

spond to the zeros of Ωx0. Moreover, again contrary to the typ-

ical greedy approach, GAP greedily—perhaps, generously—

removes a row that is likely not to correspond the zeros from

a collection of candidate rows that may do. This way, instead

of building the support of z0 by growing the size of the support

as is done in, for example, OMP, we are carving out unwanted

rows in order to obtain the correct cosupport of x0, i.e., the set

of the indices that correspond to the zeros of Ωx0.

Finally, we run a synthetic experiment to demonstrate the

effectiveness of the proposed algorith, GAP. Interestingly, we

observe from the phase transition diagrams obtained from the

experiment that GAP performs better than the analysis ℓ1-

minimization.
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