Abstract : We describe a stochastic algorithm to solve sudoku puzzles. Our method consists in computing probabilities for each symbols of each cell updated at each step of the algorithm using estimation of distributions algorithms (EDA). This update is done using the empirical estimators of these probabilities for a fraction of the best puzzles according to a cost function. We develop also some partial restart techniques in the RESEDA algorithm to obtain a convergence for the most diffcult puzzles.
https://hal.inria.fr/inria-00591852
Contributeur : Sylvain Maire
<>
Soumis le : mardi 10 mai 2011 - 13:31:21
Dernière modification le : jeudi 15 mars 2018 - 16:56:04
Document(s) archivé(s) le : vendredi 9 novembre 2012 - 11:01:19
Sylvain Maire, Cyril Prissette. A restarted estimation of distribution algorithm for solving sudoku puzzles. Statistics and Computing, Springer Verlag (Germany), 2012. 〈inria-00591852〉