SAR Image Classification with Non-stationary Multinomial Logistic Mixture of Amplitude and Texture Densities - Archive ouverte HAL Access content directly
Conference Papers Year : 2011

SAR Image Classification with Non-stationary Multinomial Logistic Mixture of Amplitude and Texture Densities

(1) , (1) , (1)
1
Koray Kayabol
  • Function : Author
  • PersonId : 900816
Aurélie Voisin
  • Function : Author
  • PersonId : 879003
Josiane Zerubia
  • Function : Author
  • PersonId : 833424

Abstract

We combine both amplitude and texture statistics of the Synthetic Aperture Radar (SAR) images using Products of Experts (PoE) approach for classification purpose. We use Nakagami density to model the class amplitudes. To model the textures of the classes, we exploit a non-Gaussian Markov Random Field (MRF) texture model with t-distributed regression error. Non-stationary Multinomial Logistic (MnL) latent class label model is used as a mixture density to obtain spatially smooth class segments. We perform the Classification Expectation-Maximization (CEM) algorithm to estimate the class parameters and classify the pixels. We obtained some classification results of water, land and urban areas in both supervised and semi-supervised cases on TerraSAR-X data.
Fichier principal
Vignette du fichier
icip11ITMLLv4.pdf (536.03 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

inria-00592252 , version 1 (28-07-2011)

Identifiers

  • HAL Id : inria-00592252 , version 1

Cite

Koray Kayabol, Aurélie Voisin, Josiane Zerubia. SAR Image Classification with Non-stationary Multinomial Logistic Mixture of Amplitude and Texture Densities. IEEE International Conference on Image Processing ICIP, Sep 2011, Brussels, Belgium. pp.173-176. ⟨inria-00592252⟩
145 View
154 Download

Share

Gmail Facebook Twitter LinkedIn More