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Abstract

In this work, we propose a multifractal approach to the problem of image analysis.
We show that an alternative description of images, based on a multifractal charac-
terization of the signal, can be used instead of the classical approach that involves
smoothing of the discrete data in order to compute local extrema. We classify each
point of the image according to two parameters, its type of singularity and its relative
height, by computing the spectra associated with different kinds of capacities defined
from the grey levels. All these informations are then used together through a Bayesian
approach.

1 Introduction

The aim of this work is to show the potentialities of a multifractal approach for image
analysis. In the fractal community, “image analysis” usually means that we are given an
image representing a certain state of a particular process, and that we want to compute some
sort of fractal dimension, which is of interest for characterizing the process, using this image

Our concern here 1s different, since we want to characterize the image itself in terms of
fractal features: in other words, the object of study is the image, and the fractal approach
is used to describe its structure. Thus our work is a fractal approach to the widely studied
image analysis problem.

In section 2, we state the basic problems of image analysis and describe some of the
“classical” solutions that have been proposed. In section 3, we recall some definitions and
results of the multifractal theory. These results are used in section 4 for a multifractal de-
scription of images. We present some results on synthetic and real images, before concluding
and proposing some desirable extensions.

2 Classical Approach to Image Segmentation

Image Analysis is an important research field which has a number of applications in robotics,
medical imaging, satellite imaging, etc ...

We restrict ourselves here to the problem of image segmentation: segmentation means
that we want to extract from the image a compact description in terms of edges and/or
regions. Thus, we do not tackle the problem of higher level interpretations such as recognition
for instance.



Essentially, image segmentation consists in finding all the characteristic entities of an
image: these entities are either described by their contours (edge detection) or by the region
where they lie (region extraction). These two approaches are dual, but their algorithms are
very different, and, unfortunately, most of the times lead to different segmentation results.

Edge Detection

It is by far the most widely used approach. The core of the classical methods is the
assumption that edges usually corresponds to local extrema of the gradient of the grey levels
in the image. In this setting, one then has to tackle the problem of computing some kind of
“derivative” of a noisy discrete signal.

Let I(z,y) be the image (noisy) signal. An edge is defined by its type: a step edge is

a 0t order discontinuity of I, a roof-edge is a 15t order discontinuity of I, ...Let G(I) be
the gradient of I. The problem reduces to the determination of a filter yielding a good
approximation of G. Under some assumptions on the nature of the noise, it may be shown
that the problem is equivalent to that of finding an optimal linear filter f such that:

G=(I*f)=Ix§f

In order words, we start by smoothing the discrete image data I by convolving it with f,
and then compute the gradient by differentiating the smoothed signal. Edge points are then
defined to be the local maxima of the gradient’s norm in the gradient’s direction. Using
additionnal criteria, one can derive expressions for optimal filters. A frequently used one is:

f(z) = —ce el sin(wz) or f(z)= —czell (Canny-Deriche filter)

It is also possible to refine the method using a multiresolution scheme: the original image
undergoes a series of successive smoothings, and, at each step, some characteristic points
(maxima of the transform) are computed. These points are then used in collaboration
through a propagation method, to describe more robustly and accurately the edges ([12]).

Region Extraction

The idea here is to separate the image into regions that verify a given uniformity criterion.
If we are dealing with very simple images, the criterion might just be that all points belonging
to a certain region must have the same grey level. However, in general, images include
textured zones, and one has to solve the much harder problem of texture discrimination. For
more complete discussion, see citeMonga87,lvpmjpb92.

3 Basics of the Multifractal Theory

We define here our notations and briefly recall some basic facts about the multifractal theory
([1, 2, 3, 4, 14, 13]).

Let u be a Borel probability measure on [0,1] x [0,1]. Let v, be an increasing sequence
of positive integers, and define:
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We consider the following quantities:
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where 3 * means that the summation runs through those indices (4, 7) such that u(Z; ;) # 0.
When the limit exists, we set:

lim 7.(q) = 7(q)
We then define fi(a) as the following Legendre transform of 7(q):
fila) = inf (ag —7(q))

q€lR

On the other hand, we consider the sets:

Ea:{(w,y)E[O,l[ «[0,1[/ lim M:a}

n—oo log Vn

with

In(wvy) = {Ii,j,n/(wvy) S Ii,j,n}
a is the local Hélder exponent at point (z,y), and we define f5(a) as the Haussdorff dimension
of .

Finally, we consider the following double limit:

log N¢
fo(a) = lim lim L"(a)

e—0n—c loguy,

where:

Ni(a) = card{; jn/an(lijn) € [a — e, + €[}

and a, 1s the coarse grained Holder exponent of p at I; ;

log p(1; jn)

log v,

an(Lijn) =

A central concern of the multifractal theory is to compare the three descriptions of the
singularities of the measure, namely the “spectra” (o, fi(a)),(e, fy(@)) and (e, fu(a)). This
has important applications. Indeed, 7(gq), and thus fi(«)), is usually much easier to compute
on experimental data than the other spectra: 7(g) is obtained by averaging over many
“boxes” and then taking the limit. f;(a) is more difficult to evaluate, both theoretically
and practically, specially on real noisy data, since pointwise computations are necessary. As
for fn(a), it is even much more complex, since the computation of a Hausdorff dimension is
typically very involved.
Under very general assumptions, it has been proven that ([1]):

fr(a) < fi(a)



It is also possible to prove that in general ([8]):

fo(@) < fi(a)

For certain special classes of measures, including multinomial measures, we have an equality:

fala) = fo(@) = fi(a)

when all quantities are the same, we simply note them f(a).

In the case of multinomial measures, f(a) is a bell-shaped curve. This shape is also
observed for a number of natural phenomena. However, this is by no way a general property,
as one can prove that any ruled function can be the spectrum of a multifractal function
(see [5]), or capacity (see [8]).

Other “special” features of f may appear depending on the construction of the measure,
as for instance negative values (see [13]). In general, it is easy to construct a measure
for which fi(a) is strictly greater than f;(a) and fi(a). We shall call the assumption
that f; = fn = fi the “strong assumption”, and the assumption that f, = f5 the “weak
assumption”.

4 Application to Image Analysis

4.1 Definition of the Measures

Though fractal geometry has been introduced a long time ago in image analysis, it is not
yet used extensively [16, 10].

Some authors have used the fractal dimension to perform texture classification and image
segmentation, other have used higher order dimensions or measures, as correlation or lacu-
narity [6, 9], to refine the results and have obtained some interesting results. Very few papers
have been devoted to the use of multifractals in image analysis[11], although we believe that
approaches based on the computation of the fractal dimension are largely unfounded. This
approach assumes that the 2D grey level image can be seen as a 3D surface, or, equivalently,
that the grey levels can be assimilated to a spatial coordinate on the z-axis. This assumption
has no theoretical basis, since the scaling properties of the grey levels are generally different
from those of the space coordinates. Instead, we should look at the grey levels as a measure,
laid upon a generally compact set, totally inhomogeneous to space coordinates. This leads
to a multifractal analysis.

A natural choice is to define the measure g as the sum of intensities of pixels in the
measured region. This measure will be useful, but it will not be sufficient for a fine description
of the image. One possibility is then to define other types of functions of the grey levels,
and to apply the multifractal analysis to them. Since the notion of resolution is of great
importance in image analysis, we find it more appropriate to work with set functions than
with point functions. However, it occurs that those functions that are relevant in our field
are not in general measures, but rather capacities. Lack of space prevents us from presenting
the extension of the multifractal analysis to capacities, thus we refer the interested reader
to [8] and just define the capacities that we will need.



We introduce “max”, “min” and “iso” capacities of a region Q. If * is the subset of €2
where intensity is non-zero, and p(7) is the intensity of the point i, we define:

pmax() = maxieap(i) and g, (Q) = minieq«p(z) (1)
If G(2) is the geometrical center of €, we define:

iuo( ) = Card{i € Q/p(i) = p(G(2))} (2)

The exponents computed with those capacities give different informations on the singularities
encountered: amax and a,;,, only depends on the height of the singularity, a;,, only depends
on the kind of singularity, and a,,,, depends on both height and kind of the singularity.

4.2 Edge Detection Using Multifractal Characterizations
4.2.1 Introduction

The approach here is, in some sense, inverse to the classical one explained in section 2:
instead of smoothing the discrete data in order to be able to compute some derivatives, we
stay with our initial discrete values and quantify the singularity around each point; we then
characterize an edge point as a point having a given value of singularity.

This procedure is based on the idea that, in some cases, it might be impossible to recover
an underlying continuous process from the discrete data (if such a process exists ...). Thus
it seems more natural to directly model the sampled signal. The advantage is that we do
not loose or introduce any information by smoothing. The drawback is that we may well
be much more sensitive to noise. This is why we have to define several capacities. Using
jointly the local information provided by a and the global one contained in f(a), we are
able to construct a operator on the image whose main features are the following ones: it is
idempotent (it detects its own result), it reacts differently to different types of singularities
(provided that the noise is not too important), and no tuning parameters are needed, as soon
as the type and the amplitude of the noise are known. As a drawback, since a more complex
analysis of the image is made, the computations are not as fast as with gradient-based edge
detectors. A few minutes are needed to analyse a 512x512 image.

4.2.2 Computation of the singularity exponents

We study the behaviour of the singularity exponents for sum, max,min and iso capacities on
simplified models of step-edge, corner, line and plane. Figure 1 describes those singularities.
There are only two values for the gray levels: p;, level of the point of interest, and p,, level
of the background. We will denote V(7) the i X 7 squared neighborhood centered on the pixel
of interest, and V*(¢) as V(¢) minus the pixel of interest.

We stress a very important point here: it is obvious that the objects we consider are far
from being “fractals”, or even “multifractals”. However, our approach does not at any point
make such an assumption. All we do is suppose that the defined capacity does have a Holder
at each point (a rather weak assumption). This makes it possible to compute a multifractal
spectrum, whether the capacity is multifractal or not. Of course, strictly speaking, the
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Figure 1: Step-edge, line , corner line and corner models. Notice that the line and the line
corner model give the same capacity, they won’t be distinguished further.

spectra corresponding to all of our models reduce to the point (2,2), thus we do not have a
multifractal behaviour. The fundamental idea here is that we are not interested in getting
the “real” spectrum, but rather to verify that, if we use a certain procedure of estimation, the
“spectrum” associated with a typical image will allow a description of the local singularities.
In other terms, we are not interested in absolute quantitites (the “true” spectrum), but
rather in evidencing differences between estimated spectrum associated with different sets

of images.
a is computed as the estimation of the slope of log u(V (7)) versus log:, with ¢ = 2n 4 1,
n = 0.... The maximal size of neighborhoods is related to localization of computation. If

we use little neighborhoods, for instance ¢ < 3, a will react to localized singularities, if we
use larger neighborhoods, a will react to more widespread singularities. If we consider a
computing neighborhood V/(3), it is possible to derive explicitely the probability law of a in
some cases, for instance when the noise is additive gaussian or uniform. The calculations
are simple but rather tedious, and the formulas are quite long, thus we only give here one
law for information:

Law of o (sum measure), for a gaussian additive noise of variance o: the
singularity is characterised by n (7’;’ equals 9 for a smooth region, 6 for a step, 4 for a corner,

1 _ D2.
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Observation of plots of different laws show that there is nearly no chance of confusion

between the different types of singularity when the amount of noise is not too large, and
that the max and min capacities are more robust to uniform noise.

4.2.3 Results

We first present the detection of a step singularity blurred with rayleigh noise. Result is
shown on figure 2. We can see that edge detected by a Canny-Deriche filtering is irregular,
and edges detected by the multifractal exponent are far less sensitive to noise. On figure 3,
we can see the detection of a line blurred with uniform noise. The line is detected with a
fair accuracy by multifractal exponent, and not at all by Canny’s filter: we should here have
used a specific filter for lines. However, the same multifractal exponent is able to detect both
step-edge and line.

Figure 2: from left to right: blurred step, Canny’s edge, edge detected with max capacity
on V(3), with sum measure on V(3).

We then present a compared result on a natural scene (figure 4). We can see on that
figure that the multifractal exponent is able to detect small details accurately. The most
remarkable is the accuracy of the detection of the corners of the door and of the limits of
the bush, when Canny’s edges only gives good results in presence of a step.



Figure 3: from left to right: blurred line, Canny’s edge with large bandwidth, with small
bandwidth and edge detected with iso capacity, 9 gray levels on V(3).

Figure 4: Left: original image, middle: Canny’s edges, right: exponent computed with min

capacity on V(3).

4.2.4 Use of f(a)

In the images presented so far, the use of & computed with well chosen capacities has proven
to be sufficient. However, this will not always be the case. In this section, we indicate how
the use of f(a) can help us refine our image description. Let us consider figure 5.

Figure 5: Left: Some edges. Right: A texture

On the left, anyone would see three edges, that are easily detected by any edge detector.
On the right, we have done nothing else than triple the number of lines in the image. Of
course, it 1s still possible to interpret this image as being composed of nine edges, but most
people would prefer to talk of a binary texture. However our local computation of exponent
a would be the same in both situations.

Here appears another characteristic feature of an edge: an edge does correspond to a
certain type of singularity in the images, or to an extremum of the gradient (local character-
ization), but also to a “rare” event, in some sense that has to be defined. In other words, if
too many “edges” are detected in a portion of an image, then the human visual system will
have a tendency to talk of a textured zone, rather than of a concentration of edges.

This is where we can use the f,(a) characterization. Remember that f,(a) measures,



loosely speaking, how rare or frequent an event of singularity « is.

Now if we assume that f,(a) and fi(a) are equal (weak assumption), we may assess
how “rare” a smooth edge is, because a smooth edge point will belong to a set F, whose
dimension is one. We simply use here the connection between geometry and probability
provided by the assumption made on the two spectra. The general line of reasoning is the
following one: from a geometrical point of view, a point with prescribed singularity belongs
to a set of given fi(a). If the weak assumption holds, then f,(«) is also given, and we know
the probability of finding such a point in the image at a given resolution (this means that
all the quantities are computed at these resolution).

In this sense, we may precisely say how an edge, for instance, is characterized both by
a given singularity value (local condition) and by the fact that it is a rare event (global
condition). To illustrate this, we show in figure 6: the points of figure 4 (original image)
belonging to the sets E, (there might be several such E, sets) such that f(a) ~ 2 (we keep
here all the points lying inside regions), and the points where f(a) ~ 1 (one can verify that
we get most edge points of the original image),

Figure 6: Left: image of points (in white) whose f(a) = 1.93. Right: image of points (in
white) whose f(a) = 1.1.

These ideas can be used more rigorously in a probabilistic setting. The general framework
is that of Bayesian optimisation. We restate the problem as follows: at a given point (z,y)
in the image, we look for the most probable couple (¢, X), where ¢ is the type of singularity
and A the relative height of singularity at (z,y). Let us denote by A the vector of computed
local Hélder exponents at point (z,y), with different measures or capacities. Typically,
A = (Otmin, Omax, Xsum, Qiso). As is usual in image analysis, we use Bayes rule to write:

Pr(A/(t,\))Pr(t,\)

Pri(t,0)/4) = =R

and we look for the couple (¢,) that maximizes the left hand side of the above equality.

This equivalent to maximize the product Pr(A/(¢,A)) x Pr(t, ), since Pr(A) is a constant

here. Thus we have to evaluate two quantities: the conditional probability of a vector of

Holder exponents given a singularity, and the prior probability of a given singularity.
Computation of the conditional probability

This probability is difficult to compute theoretically, and only the cases of uniform noise

with A = (umax, ¥sum ) 0F A = (Qmin, ®sum ) have been completed (see [7]).




In the general case, one has to perform computer simulations to obtain the conditional
laws.
Computation of the prior probability

Two cases have to be considered: when the point does not lie in a smooth region, it is
reasonable to assume that ¢ and A are independant. Thus:

Pr(t, ) = Pr(t)Pr(N)

On the other hand, we know that the iso capacity reacts only to the type of the singularity,
and that the max capacity reacts only to the relative height of the singularity. In our case,
we even have an equivalence between (¢, A) and the coarse grained Holder exponents, which
allows us to write:
Pr(teT) = Pr(al, € 4)
PT()\ S /\) = Pr(a:lnax S A‘m)
where we have used an superscript n to indicate that the coarse grained exponent are com-
puted at resolution n. The sets T, A; and A, A,, are related by expressions that can be
derived explicitely.
To evaluate Pr(t, A), we thus need only to evaluate the two spectra fy(ciso) and fy(umax)-
This can be done directly on the data, using an approach described in citelevy-mignot-
berroir.
Finally, when (z,y) lies in a smooth region, another approach using only (min, max)
have to be used.
Results obtained with this approach are presented on an aerial photograph (figure 7).
A blurring with gaussian noise of variance 0.1 has first been preformed, then the method
explained above has been applied at three succesive resolutions. Finally, a propagation
algorithm have been used.

5 Conclusion

In this work, we have demonstrated that the use of a multifractal characterization of image
points can help to solve the problem of segmentation. Our experiments show that, in several
cases, this approach gives at least as good results as the classical ones. Much more work
is needed in this direction, but these preliminary results show that the («, f(a)) approach
might be able to build a bridge between the two so far unconnected methods of edge detection
and region extraction.
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