A. J. Baddeley and M. N. Van-lieshout, Stochastic geometry models in high-level vision, Journal of Applied Statistics, vol.55, issue.5-6, 1993.
DOI : 10.1098/rsta.1990.0127

Y. Boykov and V. Kolmogorov, An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.9, pp.1124-1137, 2004.
DOI : 10.1109/TPAMI.2004.60

. Fig, Shows the energy evolution for the three samples of around 260, 1900, and 3250 flamingos. (b, d, f) Shows the flamingo detection rate for the same samples

P. J. Green, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, vol.82, issue.4, pp.711-732, 1995.
DOI : 10.1093/biomet/82.4.711

X. Descombes, R. Minlos, and E. Zhizhina, Object Extraction Using a Stochastic Birth-and-Death Dynamics in Continuum, Journal of Mathematical Imaging and Vision, vol.21, issue.3, pp.347-359, 2009.
DOI : 10.1007/s10851-008-0117-y

URL : https://hal.archives-ouvertes.fr/inria-00133726

A. Gamal-eldin, X. Descombes, and J. Zerubia, Multiple Birth and Cut Algorithm for Point Process Optimization, 2010 Sixth International Conference on Signal-Image Technology and Internet Based Systems, 2010.
DOI : 10.1109/SITIS.2010.17

URL : https://hal.archives-ouvertes.fr/inria-00516305

S. Descamps, X. Descombes, A. Béchet, and J. Zerubia, Automatic Flamingo detection using a multiple birth and death process, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008.
DOI : 10.1109/ICASSP.2008.4517809