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ABSTRACT

We propose a new variational method to restore point-like and curve-

like singularities in 2-D images. As points and open curves are fine

structures, they are difficult to restore by means of first order deriva-

tive operators computed in the noisy image. In this paper we propose

to use the Laplacian operator of the observed intensity, since it be-

comes singular at points and curves. Then we propose to restore

these singularities by introducing suitable regularization involving

the l-1-norm of the Laplacian operator. Results are shown on syn-

thetic an real data.

Index Terms— image processing, non smooth convex optimiza-

tion, l1-minimization, Nesterov scheme, laplacian operator

1. INTRODUCTION

The issue of preserving fine structures in image reconstruction, such

as points or curves in 2-D, has known an increasing interest for scien-

tific purposes, e.g., in biology and astronomy, for instance filaments

and spots detection in biomedical and astronomical images, road and

building extraction from satellite images. There is a vaste literature

on this subject and a lot of different techniques have been proposed

in these last years. Without claiming of being exhaustive we refer to

[5] for segmentation of blood vessel via morphological reconstruc-

tion, [4] for filaments detection in 3D by using active contours ap-

proach and [2] for object tracking based on sparsity principles and

source separation. In this paper we focus on the variational point of

view. Usually these images, possibly corrupted by noise, are char-

acterized by an high intensity value on sets of low dimension, such

as points or curves in 2-D, and which decreases to 0 in a neighbor-

hood of the singularities. In this work we propose a new model for

point and curve restoration, where these low dimensional sets are

considered as singularities in the image, given in term of a proper

differential operator defined on the intensity of the image. We pro-

vide, in a discrete setting, a new variational formulation for restoring

such singularities in noisy images.

The research of Daniele Graziani is supported by CNRS under the re-
search project ”Gyrovision”.

2. PRELIMINARIES

This section is devoted to notation, preliminaries results, and to the

introducytion of fast descent gradient scheme we will use in the se-

quel.

2.1. Discrete setting

We define the discrete rectangular domain Ω of step size δx = 1 and

dimension d1d2. Ω = {1, ..., d1} × {1, ..., d2} ⊂ Z
2. In order to

simplify the notations we setX = Rd1×d2 and Y = X×X . u ∈ X

denotes a matrix of size d1 × d2. For u ∈ X , ui,j denotes its (i, j)-

th component, with (i, j) ∈ {1, ..., d1} × {1, ..., d2}. For g ∈ Y ,

gi,j denotes the (i, j)-th component of with gi,j = (g1
i,j , g

2
i,j) and

(i, j) ∈ {1, ..., d1} × {1, ..., d2} We endowed the space X and Y

with standard scalar product and standard norm. For u, v ∈ X:

〈u, v〉X =

d1
X

i=1

d2
X

j=1

ui,jvi,j .

For g, h ∈ Y :

〈g, h〉Y =

d1
X

i=1

d2
X

j=1

2
X

l=1

g
l
i,jh

l
i,j .

For u ∈ X and p ∈ [1,+∞) we set:

|u|p := (

d1
X

i=1

d2
X

j=1

|ui,j |p)
1

p .

For g ∈ Y and p ∈ [1,+∞):

‖g‖p := (

d1
X

i=1

d2
X

j=1

2
X

l=1

|gli,j |p2)
1

p .

If G,F are two vector spaces and H : G → F is a linear operator

the norm of H is defined by

‖H‖ := max
‖|u‖G≤1

(‖Hu‖F ).



Definition 2.1 A function F : X → R is said to be L-lipschitz

differentiable if it is differentiable and

|∇F (u) −∇F (v)|2 ≤ L|u− v|2,

for every u, v ∈ X.

Definition 2.2 Let ψ : X → R be a convex function. The operator

proxψ : X → X x ֌ arg min
y∈X

{ψ(y) +
1

2
|y − x|2}

is called proximal operator associated to ψ.

If proxλψ can be computed exactly for every λ ≥ 0 and every

x ∈ X , the function ψ is said to be simple.

If u ∈ X the gradient ∇u ∈ Y is given by:

(∇u)i,j = ((∇u)1i,j , (∇u)2i,j)

where

(∇u)1i,j =

(

ui+1,j − ui,j if i < d1

0 if i = d1,

(∇u)2i,j =

(

ui,j+1 − ui,j if j < d2

0 if j = d2.

We also introduce the discrete version of the divergence operator

defined as the adjoint operator of the gradient: div = −∇∗. Then

we can define the discrete version of the Laplacian operator as ∆u =
Div(∇u).

2.2. Nesterov algorithm

Here we briefly recall the fast descent gradient Nesterov’s algorithm

(see [6]) we use to minimize 6. We state it in the formulation pro-

posed in [7]. For further details and general statements we refer the

reader to [7] and references therein.

Proposition 2.1 Let F : X → R be given by:

F (u) = F1(u) + F2(u) for u ∈ X,

where F1 is a convex L-Lipschitz differentiable function and F2 a

simple function. Then the following algorithm:
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>
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:

u0 ∈ X A0 = 0 g = 0 u = 0

do for k : 1, ...,K

t = 2
L

a = t+
√
t2 + 4tA

v = proxAF2
(u0 − g)

y = Au+Av
A+a

u = prox 1

L
F2

(y − 1
L
∇F1(y))

g = g + a∇F1(u)

A = A+ a

(1)

ensures that:

0 ≤ F (uk) − F (u∗) ≤ L
|u∗ − u0|2

k2
, (2)

where u∗ ∈ X is a minimum point of F and u0 ∈ X is an initial

data.

3. THE VARIATONAL METHOD

3.1. The discrete functionals

From a general point of view in order to restore the given data u0,

one would like to minimize an energy with an L2-fidelity term and

a proper regularization criterion F . To this end one has to solve the

following minimum problem:

min
u∈X

F (u) +
λ

2
|u− u0|22. (3)

λ > 0 is a positive weight, X is a suitable space and the criterion F

must be chosen according to the singularities to be restored. In our

case it means that F must be given by a proper differential operator

which allows for singularities on points and curves. Moreover in the

choice of F we must take into account that the singularities to be

preserved are not jump singularities. It means that, in the continous

setting, u must belongs to the space ∆Mp(Ω) of functions whose

gradient is an Lp-vector field with distributional divergence given

by a Radon measure (see [1] for the precise definiton of this space).

These considerations leads us to choose the laplacian as differential

operator and minimize the following energy:

J(u) = ‖∆u‖1 +
1

p
‖∇u‖pp +

λ

2
|u− u0|22, (4)

where λ is a positive weight and 1 < p < 2. The restriction on p is

due to the fact that when p ≥ 2 the distributional laplacian ∆u of u

cannot be a measure concentrated on points (see [1, 3] on this issue).

Therefore it would not be anymore the right operator to restore the

singularities we are interested in. In order to apply algorithm (1) it is

necessary to smooth both | · ‖1 and ‖ · ‖p norm. Indeed the first one

is not even differentiable, while the second one is not L-Lipschitz

differentiable for p < 2. To this purpose we introduce the Huber

function defined by:

wǫ(x) =

(

|x| if |x| ≥ ǫ
x2

2ǫ
+ ǫ

2
otherwise.

(5)

Then we introduce the smoother counterpart of functional (4) as:

Jǫ(u) =

d1
X

i=1

d2
X

j=1

wǫ(|(∆u)i,j |)

+
1

p

d1
X

i=1

d2
X

j=1

wǫ(|(∇u)i,j |p) +
λ

2
|u− u0|2, (6)

where ǫ > 0 here is a small fixed parameter. We shall consider the

minimization problems:

min
u∈X

J(u), (7)

min
u∈X

Jǫ(u). (8)

As in [7] we define the notion of δ-solution associated to problem

(7), which will be used to give an estimation of the number of itera-

tions of the minimization algorithm.

Definition 3.1 A δ-solution of (7) is an element uδ ∈ X such that

J(uδ) − J(u) ≤ δ,

where u is a solution of problem (7).



We minimize Jǫ by applying algorithm (1) with

F1(u) = Jǫ(u) F2(u) = 0.

Indeed it is not difficult to check that for u ∈ X with u = 0 on the

boundary we have

∇F1(u) = ∆(Ψ) − div(Φ) + λ(u− u0) (9)

where

Ψi,j =

(

(∆u)i,j

|(∆u)i,j |
if |(∆u)i,j | ≥ ǫ

(∆u)i,j

ǫ
otherwise,

Φi,j =

(

(∇u)i,j

|(∇u)i,j |2−p if |(∇u)i,j |p ≥ ǫ
(∇u)i,j

ǫ
otherwise.

Then, taking into account that Ψ and Φ are Lipschitz functions with

constant 1
ǫ

and 1
ǫp

respectively, we infer

|∇F1(u) −∇F1(v)|2 ≤ (
‖∆‖2

2

ǫ
+

‖div‖2
2

ǫ2−p
+ λ)|u− v|2.

Therefore, by recalling that ‖∆‖2 ≤ 8 and ‖div‖2 ≤ 2
√

2, we

conclude that

|∇F1(u) −∇F1(v)|2 ≤ (
64

ǫ
+

8

ǫ2−p
+ λ)|u− v|2. (10)

Thanks to inequality (10) we are in position to apply algorithm (1).

In our case algorithm (1) ensures that:

0 ≤ Jǫ(uk) − Jǫ(u
∗
ǫ ) ≤ (

64

ǫ
+

8

ǫ2−p
+ λ)

|u∗
ǫ − u0|2
k2

, (11)

where u∗
ǫ is a minimum of Jǫ.

4. EXAMPLES

Before running our algorithm all the parameters have to be fixed. It

is easy to see that for every u ∈ X we have

0 ≤ Jǫ(u) − J(u) ≤ d1d2ǫ. (12)

Then by using (12) (11) and the fact that u∗
ǫ is a minimum of Jǫ we

have

J(uk) ≤ Jǫ(uk) ≤ Jǫ(u) + (
64

ǫ
+

8

ǫ2−p
+ λ)

|u∗
ǫ − u0|2
k2

,

where u is a minimum of J . By applying again bound (12) we de-

duce

J(uk) ≤ J(u) + d1d2ǫ+ (
64

ǫ
+

8

ǫ2−p
+ λ)

|u∗
ǫ − u0|2
k2

.

Therefore the worst case precision to get a δ-solution of (7) is:

J(uk) − J(u) = (
64

ǫ
+

8

ǫ2−p
+ λ)

|u− u0|2
k2

+ d1d2ǫ;

then the optimal choices are

ǫ =
δ

d1d2
, K =

h

r

(
64d1d2

δ
+ 8

d1d2

δ2−p
+ λ)C]

i

+ 1,

where C := maxX |u − u0|2 and K the total number of iterations.

For images rescaled in [0, 1], in the worst case problem, the number

of iterations K needed to get a δ-solution of order 1 does not exceed

(a) Original image (b) Noisy image

(c) Restored image (d) Convergence of the algorithm

Fig. 1. Synthetic noisy image PSNR 26.1Db: we test our algorithm on a noisy image
containig open curves. Image size d1 × d2 = 128 × 128. λ = 40. ǫ = 6.1e − 5.
Number of iterations K = 2000 .

the value 8000. In all numerical test we let run the algorithm for

no more than 4000 iterations. We show a convergence curve with

the value of J(uk) on the y-axis and the number of iterations on the

x-axis. The parameter ǫ is always fixed in order to get a δ-solution

of order 1. This choice seems to lead to good restoration results.

The parameter λ is tuned according to the level noise and its value

is specified on each numerical test. Finally as exponent p we always

take p = 1.5. In Figure 1 and 2 we test the algorithm against noise on

synthetic image containing open curve. A Gaussian Noise is added

to the original image. The image domain is of size d1 ×d2 = 128×
128. CPU time is about 50 s running on an Intel (R) Xeon(R) CPU

5120 at 1.86GHz. In Figure 3 we test the algorithm against noise on

a synthetic image containing points and open curves, which are the

singularities we want to be preserved in the restoration process. A

Gaussian noise is added to the original image. The image domain is

of size d1 × d2 = 256 × 256. CPU time is about 8mn s running

on an Intel (R) Xeon(R) CPU 5120 at 1.86GHz. Finally in Figure 4

we test our model on real noisy data. The image domain is of size

d1 × d2 = 256 × 256. CPU time is about 9mn running on an Intel

(R) Xeon(R) CPU 5120 at 1.86GHz.

5. CONCLUSION

In this work a new variational model for restoring point and curve-

like singularities in images has been developed both from a theoret-

ical and an experimental point of view. We emphasize that, accord-

ing to our knowledge, this approach seems to be new in the liter-

ature. Moreover we stress out that, despite some extra smoothing

effect, mainly due to the fact we work with a mesh step size equal

to 1, we obtain good experimental results. There are many rooms

for improvement from a numerical point of view, such as analysis of

functional with more general discrepancy term of type |Hu− u0|q ,

whereH is a linear operator modeling the blur and q ≥ 1; as well as

performing 3D-numerical simulations on real data. These are subject

of our current investigation.



(a) Noisy image (b) Restored image

(c) Noisy image (d) Restored image

Fig. 2. Synthetic noisy images: we test our algorithm on noisy images. Top left: noisy
image of size d1 × d2 = 128 × 128; PSNR 20.4Db. Top right: restored image
λ = 25; ǫ = 6.1e − 5; number of iterations K = 2000. Down left: noisy image of
size d1 × d2 = 128 × 128, PSNR 14.1Db. Down right: restored image λ = 10;
ǫ = 6.1e − 5; number of iterations K = 2000 .
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(a) Noisy image

(b) Restored image

Fig. 3. Synthetic noisy image PSNR 19.1Db: we test our algorithm on a noisy image
containing 5 points and 2 open lines. Image size d1 × d2 = 256 × 256. λ = 8.
ǫ = 15e − 6. Number of iterations K = 4000 .

(a) Noisy image (b) Restored image

Fig. 4. Real noisy image: we test our algorithm on a real image of a blood vessels
network corrupted by Gaussian noise. Image size d1 × d2 = 256 × 256. λ = 10.
ǫ = 15e − 6. Number of iterations K = 4000 .


