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ABSTRACT

In this work, we propose a multifractal approach to the
problem of change detection in image sequences, such as
registrated remotely sensed images of the same scene or se-
quences of medical images. We show that the multifrac-
tal analysis of images — based on a modelisation of the
two-dimensional signal as measure — can be of great help if
we want to detect changes without any a priori knowledge
of the objects to be extracted. We first present a simple
change detection method based on the classical multifrac-
tal analysis of images w.r.t. the Lebesgue measure. We
then describe an improved method based on the analysis of
images w.r.t. a reference measure, which in this case is the
first image of the sequence. We finally show some results
on real data.

1. INTRODUCTION

An important application of image analysis is to provide
means to monitor a scene over a period of time and to detect
changes in the content of the scene. In photo-interpretation,
change detection consist of finding significant differences —
most of the time man-made changes in opposition to natu-
ral and/or seasonal changes — between the new image and
site models derived from the older images. In biomedical
imagery, the aim is to control diseases evolution and its
cure. In both contexts, the existing methods require a pri-
ori knowledge of the objects to be extracted in the new
image, see [1, 2]. Here, we propose a multifractal approach
to the change detection problem, which does not require
such a assumption. In section 2, we recall some fundamen-
tal definitions of the multifractal theory. We describe in
section 3 the way we apply it to image segmentation and
to change detection. Some results of image sequence anal-
ysis w.r.t. the Lebesgue measure are also presented. We
construct in section 4 a new way to analyse sequences of
images w.r.t. a analysing measure and show some results,
before concluding and proposing some desirable extensions.

2. FUNDAMENTALS OF MULTIFRACTAL
THEORY

We define here and briefly recall some fundamental facts
about the multifractal theory. More rigorous and complete
definitions can be found in [3, 4, 5, 6]. Let a p Borel prob-
ability measure laid upon a compact set P. For each point
z in P, define the Local Singularity coeflicient as:
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_ i log p(Bs(z))
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where B,s(:v) is an open-ball of diameter § centered on
the point z and when the limit exist. o(z) is often called
the Holder coeflicient. It reflects the local behavior of the
measure g around z. Points bearing the same coefficient
can be gathered into sets, named Iso-Local Singularity sets,
defined as follows :

E(a)={z:a(z) = a}. (2)
As regards the preeceding definition, we may need a re-

finement to take into account some degenerate cases, which
is Iso-Local Singularity sets at the € precision:

Ef(o)={z:a—e<afz)<a+e}. (3)
To characterize those sets, it is relevant to use a notion
of set dimension, known as the Hausdorff dimension :

dimy E = 1nf{s:111;1_}é1f;|Ei| :0} (4)

= : lim inf E;|* =
sup{s im in z_;| | oo},

where {E;}1<icoo is a 6-cover of E: E C |J2, Ei, |Es| <
6, E; C P, Vi. Finally, define the following quantity :

f(a) = dimy E(a). (5)

The description (o, fn(e)) is called the Local Singular-
ity spectrum (sometimes known as the Hélder or Hausdorff
spectrum) of the multifractal measure p.

There are other possible multifractal descriptions of a
measure, namely the Large Deviation spectrum (o, fy(o))
and the Legendre Transform spectrum (e, fi(o)), but none
of these notions will be used in this paper (for further details

on fg or fi see [3, 4]).

3. APPLICATIONS: IMAGE SEGMENTATION
AND CHANGE DETECTION

3.1. Application to image segmentation

It is quite straightforward to apply multifractal tools to
image analysis. Following equation (1), points are naturally
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type name 11 f(i,3) | parameter
mix sum > 9(1,7) none
altimetric max max 9(1,7) none
min 1/ min 9(3,7) none
planimetric | iso 1i—a,af() | 8(3,9) A
selfsim | exp( _éz)z )| 6(4,7) ¥

Table 1. definition and parameters of the capacities.

associated to pixels of the images, open-balls to windows
centered on each pixel, measures to functions of grey level
intensities.

A first natural choice is to define the measure p as the
sum of the grey level intensities of pixels (3, j) contained in
a window centered on pixel (z,y). This measure is of theo-
retical great interest, but is not sufficient for a fine and com-
plete description of the image. Other functions of grey level
intensities of the image can be defined. These functions are
no longer measures but only capacities (for a proper found-
ing of multifractal analysis of capacities, see [4]).

We introduce those capacities and summarize their defini-
tions and parameters in table 1. The general form of these
capacities is pname(z,y) = H(i,j)eﬁg(z,y) f@,7), where ]
is an given operator and f(3,J) is either g(z,y), which de-
notes the grey level intensity of pixel (z,y), or é(7,75) =
g(z,y) —g(i,7). A is a coeflicient of under-quantization of
the image, and v can be seen as the image noise standard-
deviation when the noise is of finite variance.

We distinguish three types of functions of grey level in-
tensities according to their respective properties, the first
one being the already defined “sum” measure. The two
following ones are the “max” and “min” capacities leading
to Local Singularity coefficients reflecting the sharpness of
the image in the neighborhood of the pixel (z,y). We call
them altimetric capacities. The two last capacities, which
require the extra parameters A and « are said to be plani-
metric since they are sensitive to the spatial distribution of
the measure. “sum” is a miz measure since it responds to
both sharpness and spatial distribution of the measure.

All pixels having the same Local Singularity coefficient
can be grouped together to form a binary image of Iso-Local
Singularities, as defined in (2) and (3) . These binary im-
ages can be characterized by a “fractal” dimension, defined
in (4).

The multifractal description of (5) has the advantage of
being at the same time local (with coeflicients a(z,y)) and
global (with graph (a, fa(a))), see graph (1) of fig. 2., cor-
responding to image (a) of fig. 1. analyzed w.r.t. Lebesgue
measure. Thus, it appears to be a good way to solve the
problem of image segmentation, as indicated in [7].

3.2. Application to change detection

Such a description provides us with a powerful tool to detect
changes in sequences of images and to extract and analyze
those changes. If a change occurs in an incoming image, it is
reflected in the global description provided by the graph of
the multifractal spectrum. The abscissa o« of the part of the
spectrum (o, fr(c)) that has changed allows the extraction

(e)

Figure 1. From top to bottom: (a) analyzed image,
(b) analyzing image et (c) absolute difference (pixel
to pixel) between the two registrated images.



of the binary image corresponding to this detected change.

An important topic in this approach is the definition and
the computation of an optimal measure, which does not re-
act too much to variation of the noise but only to effective
changes. The “selfsim” measure represent a first step to-
wards taking this requirement into account.

4. ANALYSING MEASURE METHOD

Another way to improve the results is to replace the analyz-
ing measure (that means the measure in the denominator of
expression (1), which in that case is the Lebesgue measure:
#(Bs(z)) o« §) by another reference measure. We found it
useful to be a reference image such as the first image of the
sequence to be analyzed.

Thus, the corresponding Local Singularity coefficient
w.r.t. a reference measure can be written as follows :

a(z) = lim M, (6)
50 log p(Bs(z))

where p is the analyzing measure and ¢ the analyzed ca-
pacity and when the limit exist. Interested readers can
refer to [4] for a complete description of Analyzing Mea-
sure Method. Analyzing the new incoming image w.r.t. the
reference image emphasizes the changes: the multifractal
spectrum will reflect the importance of the changes between

the two compared images.
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Figure 2. Local Singularity spectrums of: (1)
analysed image with “sum?” measure w.r.t. the
Lebesgue measure, (i1) analysed image with “sum”
measure w.r.t analysing image.

In our experiments, its main mode usually corresponds
to the noise difference between images, whereas secondary
modes correspond to effective changes. On graph (ii) of
figure 2. can be seen the spectrum of image (a) analysed
w.r.t. image (b). See image (u) of fig. 3. for Local Singular-
ity coeflicients image and image (v) for resulting extracted
image of detected changes, corresponding to an Iso-Local
Singularity image. As can be seen on image (c) of figure 1.
and image (v) of figure 3., the extracted change using the
multifractal analysis is much more relevant than the simple
absolute difference the two images, without any geometric
corrections.

Multifractal tools shows promises in the field of change
detection. Some extensions of this work could be the use
of Large Deviation and Legendre Transform spectrum ex-
tended to the Analyzing Measure Method context. It could
be also interesting to define optimality constraints not only
on the measures, but also on the corresponding spectrum.

(v)

Figure 3. (u) Local Singularity coefficients image
and (v) extracted image of detected change between
analysed and analysing image.
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