G. Barthe, V. Capretta, and O. Pons, Setoids in type theory, Journal of Functional Programming, vol.13, issue.02, pp.261-293, 2003.
DOI : 10.1017/S0956796802004501

URL : https://hal.archives-ouvertes.fr/hal-01124972

S. Basu, R. Pollack, and M. Roy, Algorithms in Real Algebraic Geometry, Algorithms and Computation in Mathematics, vol.10, 2006.
DOI : 10.1007/978-3-662-05355-3

URL : https://hal.archives-ouvertes.fr/hal-01083587

H. Bender and G. Glauberman, Local analysis for the Odd Order Theorem. Number 188 in London Mathematical Society Lecture Note Series, 1994.

Y. Bertot and P. Castéran, Interactive Theorem Proving and Program Development, Coq'Art: the Calculus of Inductive Constructions, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00344237

Y. Bertot, G. Gonthier, S. Ould-biha, and I. Pasca, Canonical Big Operators, Theorem Proving in Higher-Order Logics, pp.86-101, 2008.
DOI : 10.1007/3-540-44659-1_29

URL : https://hal.archives-ouvertes.fr/inria-00331193

Y. Bertot, F. Guilhot, and A. Mahboubi, A formal study of Bernstein coefficients and polynomials, Mathematical Structures in Computer Science, vol.21, issue.04, 2011.
DOI : 10.1017/S096012950600586X

URL : https://hal.archives-ouvertes.fr/inria-00503017

J. Bochnak, M. Coste, and M. Roy, Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, 1998.
DOI : 10.1007/978-3-662-03718-8

S. Boutin, Using reflection to build efficient and certified decision procedures, Theoretical Aspects of Computer Software, volume 1281 of Lecture Notes in Computer Science, pp.515-529, 1007.
DOI : 10.1007/BFb0014565

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Cauchy, Calcul des indices des fonctions, pp.176-229
DOI : 10.1017/CBO9780511702501.013

C. Cohen, Construction des nombres algébriques en Coq, Proceedings of JFLA2012, 2012.

C. Cohen and T. Coquand, A constructive version of Laplace's proof on the existence of complex roots

C. Cohen and A. Mahboubi, A Formal Quantifier Elimination for Algebraically Closed Fields, Symposium on the Integration of Symbolic Computation and Mechanised Reasoning, pp.189-203, 2010.
DOI : 10.1007/978-3-642-14128-7_17

URL : https://hal.archives-ouvertes.fr/inria-00464237

G. E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decomposition--preliminary report, ACM SIGSAM Bulletin, vol.8, issue.3, pp.80-90, 1974.
DOI : 10.1145/1086837.1086852

E. George, H. Collins, and . Hong, Partial cylindrical algebraic decomposition for quantifier elimination, J. Symb. Comput, vol.12, pp.299-328, 1991.

F. Garillot, G. Gonthier, A. Mahboubi, and L. Rideau, Packaging Mathematical Structures, Theorem Proving in Higher Order Logics, TPHOLs 2009 proceedings, pp.327-342, 2009.
DOI : 10.1007/978-3-540-68103-8_11

URL : https://hal.archives-ouvertes.fr/inria-00368403

G. Gonthier, Point-Free, Set-Free Concrete Linear Algebra, Interactive Theorem Proving, ITP 2011 Proceedings, Lecture Notes in Computer Sciences, 2011.
DOI : 10.1017/S0956796802004501

URL : https://hal.archives-ouvertes.fr/hal-00805966

G. Gonthier and A. Mahboubi, An introduction to small scale reflection in Coq, Journal of Formalized Reasoning, vol.3, pp.95-152, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00515548

G. Gonthier, A. Mahboubi, and E. Tassi, A small scale reflection extension for the Coq system
URL : https://hal.archives-ouvertes.fr/inria-00258384

J. Harrison, Theorem Proving with the Real Numbers, 1998.
DOI : 10.1007/978-1-4471-1591-5

W. Hodges, A shorter model theory, 1997.

L. Hörmander, The analysis of linear partial differential operators, 1983.

R. Krebbers and B. Spitters, Computer Certified Efficient Exact Reals in Coq, Conference on Intelligent Computer Mathematics, CICM 2011 Proceedings, Lecture Notes in Artifical Intelligence, 2011.
DOI : 10.1007/978-3-642-04027-6_12

A. Mahboubi, Implementing the cylindrical algebraic decomposition within the Coq system, Mathematical Structures in Computer Science, vol.17, issue.01, pp.99-127, 2007.
DOI : 10.1017/S096012950600586X

URL : https://hal.archives-ouvertes.fr/hal-00819489

A. Mahboubi and L. Pottier, ´ Elimination des quantificateurs sur les réels en Coq, Journées Francophones des Langages Applicatifs, 2002.

S. Mclaughlin and J. Harrison, A Proof-Producing Decision Procedure for Real Arithmetic, 20th International Conference on Automated Deduction, proceedings, pp.295-314, 2005.
DOI : 10.1007/11532231_22

T. Nipkow, C. Ballarin, and J. Avigad, Isabelle/hol: Theory setinterval
DOI : 10.1007/3-540-45949-9

O. Russell and . Connor, Incompleteness & Completeness, Formalizing Logic and Analysis in Type Theory, 2009.

I. Pasca, Formally verified conditions for regularity of interval matrices, 17th Symposium on the Integration of Symbolic Computation and Mechanised Reasoning, pp.219-233, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00464937

T. Peterfalvi, Character Theory for the Odd Order Theorem. Number 272 in London Mathematical Society Lecture Note Series, 2000.

A. Saibi, Typing algorithm in type theory with inheritance, Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of programming languages , POPL '97, pp.292-301, 1997.
DOI : 10.1145/263699.263742

M. Sozeau and N. Oury, First-Class Type Classes, Theorem Proving in Higher Order Logics, TPHOLs 2008 proceedings, pp.278-293, 2008.
DOI : 10.1007/11542384_8

URL : https://hal.archives-ouvertes.fr/inria-00628864

B. Spitters and E. Van-der-weegen, Type classes for mathematics in type theory. MSCS, special issue on 'Interactive theorem proving and the formalization of mathematics, pp.1-31, 2011.

P. Strub, Coq Modulo Theory, 19th EACSL Annual Conference on Computer Science Logic Computer Science Logic, CSL 2010, 19th Annual Conference of the EACSL, pp.529-543, 2010.
DOI : 10.1007/978-3-642-15205-4_40

URL : https://hal.archives-ouvertes.fr/inria-00497404

A. Tarski, A decision method for elementary algebra and geometry. Manuscript Republished as A Decision Method for Elementary Algebra and Geometry, 1948.