
HAL Id: inria-00594406
https://hal.inria.fr/inria-00594406

Submitted on 20 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing multi-deployment on clouds by means of
self-adaptive prefetching

Bogdan Nicolae, Franck Cappello, Gabriel Antoniu

To cite this version:
Bogdan Nicolae, Franck Cappello, Gabriel Antoniu. Optimizing multi-deployment on clouds by means
of self-adaptive prefetching. Euro-Par ’11: Proc. 17th International Euro-Par Conference on Paral-
lel Processing, Aug 2011, Bordeaux, France. pp.503-513, �10.1007/978-3-642-23400-2_46�. �inria-
00594406�

https://hal.inria.fr/inria-00594406
https://hal.archives-ouvertes.fr

Optimizing multi-deployment on clouds by means of

self-adaptive prefetching

Bogdan Nicolae1, Franck Cappello1,2, and Gabriel Antoniu3

1 INRIA Saclay, France

bogdan.nicolae@inria.fr
2 University of Illinois at Urbana Champaign, USA

cappello@illinois.edu
3 INRIA Rennes Bretagne Atlantique, France

gabriel.antoniu@inria.fr

Abstract. With Infrastructure-as-a-Service (IaaS) cloud economics getting in-

creasingly complex and dynamic, resource costs can vary greatly over short peri-

ods of time. Therefore, a critical issue is the ability to deploy, boot and terminate

VMs very quickly, which enables cloud users to exploit elasticity to find the opti-

mal trade-off between the computational needs (number of resources, usage time)

and budget constraints. This paper proposes an adaptive prefetching mechanism

aiming to reduce the time required to simultaneously boot a large number of VM

instances on clouds from the same initial VM image (multi-deployment). Our

proposal does not require any foreknowledge of the exact access pattern. It dy-

namically adapts to it at run time, enabling the slower instances to learn from the

experience of the faster ones. Since all booting instances typically access only a

small part of the virtual image along almost the same pattern, the required data

can be pre-fetched in the background. Large scale experiments under concurrency

on hundreds of nodes show that introducing such a prefetching mechanism can

achieve a speed-up of up to 35% when compared to simple on-demand fetching.

1 Introduction

The Infrastructure-as-a-Service (IaaS) cloud computing model [1, 2] is gaining

increasing popularity both in industry [3] and academia [4, 5]. According to

this model, users do not buy and maintain their own hardware, but rather rent

such resources as virtual machines, paying only for what was consumed by their

virtual environments.

One of the common issues in the operation of an IaaS cloud is the need to

deploy and fully boot a large number of VMs on many nodes of a data-center

at the same time, starting from the same initial VM image (or from a small

initial set of VM images) that is customized by the user. This pattern occurs for

example when deploying a virtual cluster or a set of environments that support

a distributed application: we refer to it as the multi-deployment pattern.

Multi-deployments however can incur a significant overhead. Current tech-

niques [6] broadcast the images to the nodes before starting the VM instances, a

process that can take tens of minutes to hours, not counting the time to boot the

operating system itself. Such a high overhead can reduce the attractiveness of

IaaS offers. Reducing this overhead is even more relevant with the recent intro-

duction of spot instances [7] in the Amazon Elastic Compute Cloud (EC2) [3],

where users can bid for idle cloud resources at lower than regular prices, how-

ever with the risk of their virtual machines being terminated at any moment

without notice. In such dynamic contexts, deployment times in the order of tens

of minutes are not acceptable.

As VM instances typically access only a small fraction of the VM image

throughout their run-time, one attractive alternative to broadcasting is to fetch

only the necessary parts on-demand. Such a “lazy” transfer scheme is gaining

increasing popularity [8], however it comes at the price of making the boot

process longer, as the necessary parts of the image not available locally need to

be fetched remotely from the cloud repository.

In this paper we investigate how to improve on-demand transfer schemes

for the multi-deployment pattern. Our proposal relies on the fact that the hyper-

visors will generate highly similar access patterns to the image during the boot

process. Under these circumstances, we exploit small delays between the times

when the VM instances access the same chunk (due to jitter in execution time)

in order to prefetch the chunk for the slower instances based on the experience

of the faster ones. Our approach does not require any foreknowledge of the ac-

cess pattern and dynamically adapts to it as the instances progress in time. A

multi-deployment can thus benefit from our approach even when it is launched

for the first time, with subsequent runs fully benefiting from complete access

pattern characterization.

We summarize our contributions as follows:

– We introduce an approach that optimizes the multi-deployment pattern by

means of adaptive prefetching and show how to integrate this approach in

IaaS architectures. (Sections 2.1 and 2.2)

– We propose an implementation of these design principles by enriching the

metadata structures of BlobSeer [9, 10], a distributed storage service de-

signed to sustain a high throughput even under concurrency (Section 2.3).

– We experimentally evaluate the benefits of our approach on the Grid’5000 [11]

testbed by performing multi-deployments on hundreds of nodes (Section 3).

2 Our approach

In this section we present the design principles behind our proposal, show how

to integrate them in cloud architectures and propose a practical implementation.

2.1 Design principles

Stripe VM images in a distributed repository. In most cloud deployments [3–

5], the disks locally attached to the compute nodes are not exploited to their full

potential: they typically serve to cache VM images and provide temporary stor-

age for the running VM instances. Most of the time, this access pattern utilizes

only a small fraction of the total disk size. Therefore, we propose to aggregate

the storage space of the local disks in a common pool that is used as a dis-

tributed VM image repository. This specialized service stores the images in a

striped fashion: VM images are split into small equally-sized chunks that are

evenly distributed among the local disks of the compute nodes. When the hy-

pervisor running on a compute node needs to read a region of the VM image

that has not been locally cached yet, the corresponding chunks are fetched in

parallel from the remote disks storing them. Under concurrency, this scheme

effectively enables an even distribution of the read workload, which ultimately

improves overall throughput.

Record the access pattern and use it to provide prefetching hints to subse-

quent remote reads. According to our observations, a multi-deployment gen-

erates a read access pattern to the VM image that exhibits two properties: (1)

only a small part of the VM image is actually accessed during the boot phase

(boot-sector, kernel, configuration files, libraries and daemons, etc.) and (2) read

accesses follow a similar pattern on all VM instances, albeit at slightly different

moments in time.

For example, Figure 1 shows the read access pattern for a multi-deployment

of 100 instances booting a Debian Sid Linux distribution from a 2 GB large

virtual raw image striped in chunks of 256 KB. The read access pattern is repre-

sented in terms of what chunks are accessed (disk offset) as time progresses. A

line corresponds to each chunk and indicates the minimum, average and max-

imum time since the beginning of the multi-deployment when the chunk was

accessed by the instances. It can be noticed that a large part of the disk remains

untouched, with significant jitter between the times when the same chunk is

accessed.

Based on these observations, we propose to monitor two attributes: the total

number of accesses to a chunk and the average access time since the beginning

of the multi-deployment. These two attributes help establish the order in which

chunks are accessed during the boot phase, with an increasing number of ac-

cesses leading to a higher precision. Both attributes are updated in real time for

each chunk individually. Using this information, the slower instances to access

a chunk can “learn from the experience” of the faster ones: they can query the

metadata in order to predict what chunks will probably follow and prefetch them

in the background. As shown on Figure 1, gaps between periods of I/O activity

and I/O inactivity are in the order of seconds, large enough enable prefetching

of considerable amounts of data.

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20

D
is

k
 o

ff
s
e
t

(G
B

)

Time (s)

Fig. 1. Accesses to the VM image dur-

ing a multi-deployment of 100 VM in-

stances

To minimize the query overhead,

we propose to piggyback informa-

tion about potential chunk candidates

for prefetching on top of every re-

mote read operation to the repository.

We refer to this extra information as

prefetching hints from now on. Since

remote read operations need to con-

sult the metadata that indicates where

the chunks are stored anyway, the ex-

tra overhead in order to build prefetch-

ing hints is small. However, too many

prefetching hints are not needed and

only generate unnencessary overhead.

Thus, we limit the number of results

(and thereby the number of “false pos-

itives”) by introducing an access count threshold that needs to be reached before

a chunk is considered as a viable candidate.

An example for an access threshold of 2 is depicted in Figure 3(a), where

4 instances that are part of the same multi-deployment access the same initial

VM image, which is striped into four chunks: A, B, C and D. Initially, all four

instances need to fetch chunk A, which does not generate any prefetching hints,

as it is the only chunk involved in the requests. Next, the first instance fetches

chunk B, followed by instances 2 and 3, both of which fetch chunk C. Finally

instance 4 fetches chunk D. Since B is accessed only once, no prefetching hints

are generated for instances 2 and 3, while chunk C becomes a prefetching hint

for instance 4.

Note that a growing number of chunks that need to be stored in the reposi-

tory (as a result of adding new VM images) can lead to a high overhead of build-

ing prefetching hints, which can even offset the benefits of prefetching. This in

turn leads to the need to implement a scalable distributed metadata management

scheme (see Section 2.3).

Prefetch chunks in the background using the hints. The prefetching hints

returned with each remote read operation can be combined in order to build

a prefetching strategy in the background that operates during the periods of

I/O inactivity. Note that this scheme is self-adaptive: it can learn on-the-fly

about “unknown” VM images during the first multi-deployment, with no need

for pre-staging. After the first run, the whole access pattern can be completely

characterized in terms of prefetching hints immediately after the first read oc-

curred, which leaves room to employ optimal prefetching strategies for subse-

quent multi-deployments.

2.2 Architecture

A simplified IaaS cloud architecture that integrates our approach is depicted in

Figure 2. The typical elements of a IaaS architecture are illustrated with a light

background, while the elements that are part of our proposal are highlighted by

a darker background.

Hypervisor

Prefetch module

Local disk

Cloud middleware

Compute node

Client

R/W image

Remote read

with hints
Put/get image

Control API

Start VM
Hypervisor

Prefetch module

Compute node

R/W image

Local R/W

Local disk

Local diskLocal diskLocal diskLocal diskLocal disk

Distributed VM image repository

Remote read

with hints

Local R/W

Start VM

Stop VMStop VM

Fig. 2. Cloud architecture that integrates our approach (dark background)

A distributed storage service is deployed on all compute nodes. It aggregates

the space available on the local disks in a common shared pool that forms the

virtual machine image repository. This storage service is responsible to trans-

parently stripe the virtual machine images into chunks. The cloud client has

direct access to the repository and is allowed to upload and download VM im-

ages from it. Furthermore, the cloud client also interacts with the cloud mid-

dleware through a control API that enables launching and terminating multi-

deployments. It is the responsibility of the cloud middleware to initiate the

multi-deployment by concurrently launching the hypervisors on the compute

nodes.

The hypervisor in turn runs the VM instances and issues corresponding

reads and writes to the underlying virtual machine images. The reads and writes

are intercepted by a prefetching module, responsible to implement the design

principles proposed in Section 2.1. More specifically, writes are redirected to the

local disk (using either mirroring [12] or copy-on-write [13]). Reads are either

served locally, if the involved chunks are already available on the local disk, or

transferred first from the repository to the local disk otherwise. Each read brings

new prefetching hints that are used to transfer chunks in the background from

the repository to the local disk.

2.3 Implementation

We have chosen to implement the distributed VM image repository on top of

BlobSeer [9, 10]. This choice was motivated by several factors. First, BlobSeer

enables scalable aggregation of storage space from the participating nodes with

low overhead in order to store BLOBs (Binary Large OBjects). BlobSeer handles

striping and chunk distribution of BLOBs transparently, which can be directly

leveraged in our context: each VM image is stored as a BLOB, effectively elim-

inating the need to perform explicit chunk management.

Second, BlobSeer uses a distributed metadata management scheme based

on distributed segment trees [10] that can be easily adapted to efficiently build

prefetching hints. More precisely, a distributed segment tree is a binary tree

where each tree node covers a region of the BLOB, with the leaves covering in-

dividual chunks. The tree root covers the whole BLOB, while the other non-leaf

nodes cover the combined range of their left and right children. Reads of regions

in the BLOB imply descending in the tree from the root towards the leaves,

which ultimately hold information about the chunks that need to be fetched.

In order to minimize the overhead of building prefetching hints, we add

additional metadata to each tree node such that it records the total number of

accesses to that node. Since a leaf can be reached only by walking down into

the tree, the number of accesses to inner nodes is higher than the number of

accesses to leaves. Thus, if the access count threshold is not reached, the whole

sub-tree can be skipped, greatly limiting the number of chunks that need to be

inspected in order to build the prefetching hints.

Furthermore, we designed a metadata caching scheme that avoids unnec-

essary remote accesses to metadata: each tree node that that has reached the

threshold since it was visited the last time, is added to the cache and retrieved

from there for any subsequent visits. Cached tree nodes might not always reflect

an up-to-date number of accesses, however this does not affect correctness as

the number of accesses can only grow higher than the threshold. Obviously, the

tree nodes that are on the path towards the required chunks (i.e. those chunks

that make up the actual read request) need to be visited even if they haven’t

reached the threshold yet, so they are added to the cache too.

An example of how this works is presented in Figures 3(b) and 3(c). Each

tree node is labeled with the number of accesses that is reflected in the local

cache. Figure 3(b) depicts the contents of the cache for Instance 1 at the moment

Instance 1 Instance 2 Instance 3 Instance 4

READ(A)

hints: {}
READ(A)

hints: {}

READ(A)

hints: {}

READ(A)

hints: {}

READ(B)

hints: {}

READ(C)

hints: {}

READ(C)

hints: {}
READ(D)

hints: {C}

A B C D

Chunk composition of VM image

(a) Evolution of remote fetches in time and the

associated hints

1

1 0

1 1 0 0

A C DB

Instance 1: READ(B)

(b) Local view of the seg-

ment tree for Instance 1 after

reading chunk B

4

4 3

4 1 2 1

A C DB

Instance 4: READ(D)

(c) Local view of the segment

tree for Instance 4 after read-

ing chunk D

Fig. 3. Adaptive prefetching by example: multi-deployment of 4 instances with a prefetch thresh-

old of 2

when it reads chunk B. White nodes were previously added in the cache when

Instance 1 accessed chunk A (access count 1 because it was the first to do so).

Dark grey nodes are on the path towards chunk B and are therefore added to the

local cache during the execution of the read access. Since the access count of the

right child of the root is below the threshold, the whole right subtree is skipped

(dotted pattern). Similarly, Figure 3(c) depicts the segment tree at the moment

when Instance 4 reads chunk D. Again, white nodes on the path towards chunk

A are already in the cache. Dark grey nodes are on the path towards chunk

D and are about to be added in the cache. Since the access count of the leaf

corresponding to chunk C (light grey) has reached the threshold, it is added to

the cache as well and C becomes a prefetching hint, while the leaf of chunk B

is skipped (dotted pattern).

Using this scheme, each read from the BLOB potentially returns a series

of prefetching hints that are used to prefetch chunks in the background. This is

done in a separate thread during the periods of I/O inactivity of the hypervisor.

If a read is issued that does not find the required chunks locally, the prefetching

is stopped and the required chunks are fetched first, after which the prefetching

is resumed. We employ a prefetching strategy that gives priority to the most

frequently accessed chunk.

3 Experimental evaluation

This section presents a series of experiments that evaluate how well our ap-

proach performs under the multi-deployment pattern, when a single initial VM

image is used to concurrently instantiate a large number of VM instances.

3.1 Experimental setup

The experiments presented in this work have been performed on Grid’5000 [11],

an experimental testbed for distributed computing that federates 9 different sites

in France. We have used the clusters located in Nancy. All nodes of Nancy,

numbering 120 in total, are outfitted with x86 64 CPUs offering hardware sup-

port for virtualization, local disk storage of 250 GB (access speed ≃55 MB/s)

and at least 8 GB of RAM. The nodes are interconnected with Gigabit Ethernet

(measured: 117.5 MB/s for TCP sockets with MTU = 1500 B with a latency of

≃0.1 ms). The hypervisor running on all compute nodes is KVM 0.12.5, while

the operating system is a recent Debian Sid Linux distribution. For all experi-

ments, a 2 GB raw disk image file based on the same Debian Sid distribution

was used.

3.2 Performance of multi-deployment

We perform series of experiments that consists in concurrently deploying an

increasing number of VMs, one VM on each compute node. For this purpose,

we deploy BlobSeer on all of the 120 compute nodes and store the initial 2 GB

large image in a striped fashion into it. The chunk size was fixed at 256 KB, large

enough to cancel the latency penalty for reading many small chunks, yet small

enough to limit the competition for the same chunk. All chunks are distributed

using a standard round-robin allocation strategy. Once the VM image was suc-

cessfully stored, the multi-deployment is launched by synchronizing KVM to

start on all the compute nodes simultaneously.

A total of three series of experiments is performed. In the first series, the

original implementation with no prefetching is evaluated. In the second series

of experiments, we evaluate our approach when a multi-deployment is launched

for the first time such that no previous information about the access pattern

is available, which essentially forces the system to self-adapt according to the

prefetching hints. We have fixed the access count threshold to be 10% of the total

number of instances in the multi-deployment. Finally, the third series of exper-

iments evaluates our approach when a multi-deployment was already launched

before, such that its access pattern has been recorded. This scenario corresponds

to the ideal case when complete information about the access pattern is available

from the beginning.

Performance results are depicted in Figure 4. As can be observed, a larger

multi-deployment leads to a steady increase in the total time required to boot

all VM instances (Figure 4(a)), for all three scenarios. This is both the result

of increased read contention to the VM image, as well as increasing jitter in

execution time. However, prefetching chunks in the background clearly pays

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120

T
o
ta

l
ti
m

e
 t
o
 b

o
o
t
(s

)

Number of concurrent instances

no prefetching
our approach, first run

our approach, second run

(a) Total time to boot all VM instances of a

multi-deployment

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 20 40 60 80 100 120

T
o
ta

l
s
u
c
c
e
s
s
fu

l
p
re

fe
tc

h
e
s

Number of concurrent instances

our approach, first run
our approach, second run

(b) Total number of remote accesses that were

avoided for reads issued by the hypervisor as

the result of successful prefetches

Fig. 4. Performance of self-adaptive prefetching when increasing the number of VM instances in

the multi-deployment

off: for 120 instances, our self-adaptation technique lowers the total time to boot

by 17% for the first run and almost 35% for subsequent runs, once the access

pattern has been learned.

Figure 4(b) shows the number of successful prefetches of our approach as

the number of instances in the multi-deployment grows. For the second run, al-

most all of the ≃450 chunks are successfully prefetched by each instance, for

a total of ≃54000 prefetches. As expected, for the first run it can be clearly

observed that a higher number of concurrent instances benefits the learning pro-

cess more, as there are more opportunities to exploit jitter in execution time. For

120 instances, the total number of successful prefetches is about half compared

to the second and subsequent runs.

Figures 5(a) and 5(b) show the remote read access pattern for a multi-

deployment of 100 instances: for our approach during the first run and the sec-

ond run respectively. Each line represents the minimum, average and maximum

time from the beginning of the deployment when the same chunk (identified

by its offset in the image) was accessed by the VM instances. The first run of

our approach generates a similar pattern with the case when no prefetches are

performed (represented in Figure 1). While jitter is still observable, thanks to

our prefetching hints the chunks are accessed earlier, with average access times

slightly shifted towards the minimum access times.

Once the access pattern has been learned, the second run of our approach

(Figure 5(b)) is able to prefetch the chunks much faster, in less than 25% of the

total execution time. This prefetching rush slightly increases both the remote

read contention and jitter in the beginning of the execution but with the benefit

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20

D
is

k
 o

ff
s
e
t
(G

B
)

Time (s)

(a) Remote accesses during the learning phase

of the first-time run

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20

D
is

k
 o

ff
s
e
t
(G

B
)

Time (s)

(b) Remote accesses for the second and subse-

quent runs

Fig. 5. Remote accesses to the VM image during a multi-deployment of 100 VM instances using

our approach

of reducing both parameters during the rest of the execution. Thus, jitter accu-

mulates to a lesser extent for a small number of concurrent instances and could

be a possible explanation of why the first run is actually slightly faster than the

second run for smaller multi-deployments.

4 Related work

Many hypervisors provide native copy-on-write support by defining custom vir-

tual machine image file formats (such as [13]). They rely on a separate read-

only template as the backing image file, while storing local modifications in the

derived copy-on-write file. Much like our approach, a parallel file system [14–

16] can be relied upon to stripe and distribute the read-only image template

among multiple storage elements. However, unlike our approach, a parallel file

system is not specifically optimized for multi-deployments and thus does not

perform prefetching that is aware of the global trend in the access pattern.

Several storage systems such as Amazon S3 [17] (backed by Dynamo [18])

have been specifically designed as highly available key-value repositories for

cloud infrastructures. They are leveraged by Amazon to provide elastic block

level storage volumes (EBS [8]) that support striping and lazy, on-demand fetch-

ing of chunks. Amazon enables the usage of EBS volumes to store VM im-

ages, however we are not aware of any particular optimizations for the multi-

deployment pattern.

Finally, dynamic analysis of access patterns was proposed in [19] for the

purpose of building adaptive prefetching strategies. The proposal uses heuristic

functions to predict the next most probable disk access using the recent ref-

erence history. The algorithms involved however are designed for centralized

approaches. They typically utilize only a small recent window of the reference

history in order to avoid computational overhead associated with prefetching.

Thanks to our distributed metadata management scheme, we can maintain a full

access history that represents the global trend of the multi-deployment, which

can be leveraged to perform an optimal prefetching after the first run.

5 Conclusions

This paper proposed a self-adaptive prefetching mechanism for “lazy” transfer

schemes that avoid full broadcast of VM images during multi-deployments on

IaaS clouds. We rely on the fact that all VM instances generate a highly similar

access pattern, which is slightly shifted in time due to runtime jitter. Our pro-

posal exploits this jitter to enable VM instances to learn from experience of the

other concurrently running VM instances in order to speed-up reads not already

cached on the local disk by prefetching the necessary parts of the VM image

from the repository.

Our scheme is highly adaptive and does not require any past traces of the

deployment, bringing a speed-up of up to 17% for the first run when compared

to simple, on-demand fetching only. Once the access pattern has been learned,

subsequent multi-deployments of the same VM image benefit from the full ac-

cess history and can perform an optimal prefetching that further increases the

speed-up to up to 35% compared to the case when no prefetching is performed.

Thanks to these encouraging results, we plan to further investigate the po-

tential benefits of exploiting the similarity of access pattern to improve multi-

deployments. In particular, we see a good potential to reduce the prefetching

overhead by means of replication and plan to investigate this issue more closely.

Furthermore, an interesting direction to explore is the use of push approaches

(rather then pull) using broadcast algorithms once the access pattern has been

learned.

Acknowledgments

Experiments presented in this paper were carried out using the Grid’5000 ex-

perimental testbed, an initiative from the French Ministry of Research through

the ACI GRID incentive action, INRIA, CNRS and RENATER and other con-

tributing partners (see http://www.grid5000.fr/).

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson,

D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Commun. ACM 53

(April 2010) 50–58

2. Buyya, R., Yeo, C.S., Venugopal, S.: Market-oriented cloud computing: Vision, hype, and

reality for delivering it services as computing utilities. In: HPCC ’08: Proceedings of the

2008 10th IEEE International Conference on High Performance Computing and Communi-

cations, Washington, DC, USA, IEEE Computer Society (2008) 5–13

3. : Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2/

4. : Nimbus. http://www.nimbusproject.org/

5. : Opennebula. http://www.opennebula.org/

6. Wartel, R., Cass, T., Moreira, B., Roche, E., Manuel Guijarro, S.G., Schwickerath, U.: Image

distribution mechanisms in large scale cloud providers. In: CloudCom ’10: Proc. 2nd IEEE

International Conference on Cloud Computing Technology and Science, Indianapolis, USA

(2010) In press.

7. Andrzejak, A., Kondo, D., Yi, S.: Decision model for cloud computing under sla constraints.

In: Proceedings of the 2010 IEEE International Symposium on Modeling, Analysis and Sim-

ulation of Computer and Telecommunication Systems. MASCOTS ’10, Washington, DC,

USA, IEEE Computer Society (2010) 257–266

8. : Amazon elastic block storage (ebs). http://aws.amazon.com/ebs/

9. Nicolae, B.: BlobSeer: Towards efficient data storage management for large-scale, dis-

tributed systems. PhD thesis, University of Rennes 1 (November 2010)

10. Nicolae, B., Antoniu, G., Bougé, L., Moise, D., Carpen-Amarie, A.: Blobseer: Next-

generation data management for large scale infrastructures. J. Parallel Distrib. Comput. 71

(February 2011) 169–184

11. Bolze, R., Cappello, F., Caron, E., Daydé, M., Desprez, F., Jeannot, E., Jégou, Y., Lanteri, S.,

Leduc, J., Melab, N., Mornet, G., Namyst, R., Primet, P., Quetier, B., Richard, O., Talbi, E.G.,

Touche, I.: Grid’5000: A large scale and highly reconfigurable experimental grid testbed. Int.

J. High Perform. Comput. Appl. 20 (November 2006) 481–494

12. Nicolae, B., Bresnahan, J., Keahey, K., Antoniu, G.: Going Back and Forth: Efficient Multi-

Deployment and Multi-Snapshotting on Clouds. In: HPDC ’11: The 20th International ACM

Symposium on High-Performance Parallel and Distributed Computing, San José, CA United

States (2011)

13. Gagné, M.: Cooking with linux: still searching for the ultimate linux distro? Linux J.

2007(161) (2007) 9

14. Carns, P.H., Ligon, W.B., Ross, R.B., Thakur, R.: Pvfs: A parallel file system for Linux

clusters. In: Proceedings of the 4th Annual Linux Showcase and Conference, Atlanta, GA,

USENIX Association (2000) 317–327

15. Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D.E., Maltzahn, C.: Ceph: a scalable, high-

performance distributed file system. In: Proceedings of the 7th symposium on Operating

systems design and implementation. OSDI ’06, Berkeley, CA, USA, USENIX Association

(2006) 307–320

16. Schmuck, F., Haskin, R.: Gpfs: A shared-disk file system for large computing clusters. In:

Proceedings of the 1st USENIX Conference on File and Storage Technologies. FAST ’02,

Berkeley, CA, USA, USENIX Association (2002)

17. : Amazon Simple Storage Service (S3). http://aws.amazon.com/s3/

18. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Siva-

subramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly available key-value

store. In: SOSP ’07: Proceedings of twenty-first ACM SIGOPS symposium on Operating

systems principles, New York, NY, USA, ACM (2007) 205–220

19. Zhu, Q., Gelenbe, E., Qiao, Y.: Adaptive prefetching algorithm in disk controllers. Perform.

Eval. 65 (May 2008) 382–395

