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Abstract—We present a defense platform against text-based
message spam on SmartPhones. We focus in particular on Short
Message Service (SMS) based SPAM. Our solution relies on a
social network based collaborative approach to filter this type
of spam using Bloom filters and content hashing. We detail the
design of the supporting framework and validate its efficiency in
minimizing false positives and limiting the storage space. We
show that a content hashing based approach provides better
lookup than a bloom filter with the same storage space and
false positive probability close to 10−9.

Index Terms—SMS, Spam, Collaborative, Filtering, Bloom
Filters,

I. INTRODUCTION

Text based messaging services are very popular where 500
millions of SMS were sent in France to celebrate the new year
2011. These services are also widely used on emerging social
networks like Twitter or the basic SMS service on mobile
phones. Nowadays, the cost of SMS is decreasing and many
providers offer unlimited texting plans. This cost cut makes
mobile-phone users a more attractive target for spammers.
SMS spam is declined through different threats. Simple spam
advertising is the most known threat, but malicious SMS can
also carry malicious content like malware. Phishing or fraud
SMS also jeopardize users privacy. SMS spam has long been
considered as a minor problem, mostly because email spam
is cheaper and mobile phones have limited communication
capabilities to infect other users or browse phishing or ad-
vertisement web sites. However, modern SmartPhones offer
more capabilities than traditional mobile phones. They are able
to compute and communicate using different communication
means: WiFi, UMTS and GSM. These devices also come with
different applications which use the communication capabili-
ties. Focusing on these communication capabilities, spammers
are interested in delivering abusive or malicious SMS content
to smartphone users.

In France for example, operators have been encouraging
subscribers to report SMS spam since October 2008. Phone
users can forward offending messages to the Stop-Spam ser-
vice via the short code 33700. An initial response prompts
them to reply with the spammer’s phone number, with a
final SMS acknowledging the completed spam report. The
service has received almost half a million spam reports in
this way. This has resulted in the disconnection of only 300

phone numbers for spamming, although many more have
received cease-and-desist orders. The operators can’t just block
offending SMS messages or shuffle them into a spam folder as
many e-mail service providers do. For one thing, the senders
have paid for the messages, so the operators are contractually
obliged to deliver them unless they can prove that the sender
has breached their terms of service. Also, creating an SMS
spam folder would mean updating the firmware on millions of
phones. We believe that SMS spam has to be considered as
a global problem where mobile spam is generally originating
from senders outside the receivers mobile network operators.

Text based spam, mainly mail target spam has been ex-
tensively investigated [1], but little effort has been devoted
to understanding their applicability on SMS spam. One of
these defense techniques is the collaborative spam detection
approach. In particular, this approach relies on exchanging
black lists between users to block a detected spam on their own
devices. This implies the usage of an efficient data structure
to represent these black lists.

In this paper, we study a collaborative SMS spam filter-
ing approach over smartphones using combined hashing and
bloom filters techniques found in the literature. In section II we
review the efficiency of these techniques regarding their false
positive probabilities and storage space. Section III discusses
the design of our defense solution against SMS spam using
a collaborative approach and combining these techniques.
We carried a series of experiments designed to test to what
extent these techniques are effective in addressing SMS spam
filtering. Section IV details the real implementation of the
solution on Android based smartphones. Section V concludes
with a summary of the contributions of this paper and presents
future work.

II. BACKGROUND AND RELATED WORK

A. Collaborative spam detection

A spam filtering mechanism can be built manually by the
mobile’s user in which he tags an SMS message as spam and
where the SMS sender is introduced in a blacklist. Next time,
an SMS is received from this sender it is treated as spam and
the SMS is discarded. This approach is limited since each user
does not benefit from other user’s black lists. A collaborative
approach is based on simple and powerful insights. When a
user tags an SMS as spam, then this human effort is shared



among other users. When a message is identified as spam by
somebody elsewhere, other users of the collaborative platform
are protected from this undesired message. Our approach is
similar to collaborative Anti-Spam services such as ALPACAS
[2], [3], [1] in that it employs a reporting and querying
functions to identify if an SMS is a spam. However, these
solutions were provided for spam email and designed to run
over servers with important resources and connectivity.

B. Filters representation

1) Bloom filters: Bloom filters [4] were designed as a
space-efficient data structure for fast membership testing. A
Bloom filter is a vector of m bits, each initially set to 0. The
insertion of an element x in the filter requires to compute k
hash functions. Each hash function provides a position in the
range {0, 1, ...,m− 1} to be set to 1 on the filter. The query
of an element y also requires to compute k hash functions
and to construct a mask which contains the k positions set to
1. Then, a bitwise AND operation between the mask and the
Bloom filter is performed. If the result equals the mask, then
the answer is Yes, else the answer is No. The major drawback
of Bloom filters is false positives. A false positive occurs when
an element x is not in the filter but its different positions
computed by k hash functions are all set to 1 due to overlap
with other entries. The probability of false positive (fp) can
be calculated as follows after the insertion of n elements:

fp = (1− (1− 1

m
)nk)k (1)

The minimum of the probability of a false positive is reached
when:

k =
m

n
× ln(2) (2)

In such case the minimum of false positive probability is
estimated to fpmin = ( 12 )

k. In section III, we validate this
estimation using simulation to identify its limits regarding the
filter size and the number of hash functions. Many network
applications have used Bloom filters for routing table lookup,
packet classification and peer-to-peer networks [4]. Another
major drawback of a Bloom filter is the difficulty of deleting
inserted elements. A simple solution is the cold cache [5]
where one removes all elements when the filter is full. The
problem with this solution, is that no data remains in the
filter and we loose useful information. In [5], authors propose
the double buffering method for the deletion of old data. The
Bloom filter is divided into sub filters: an active and a warm-
up filter. The active filter stores all the recent inserted elements
and the warm-up filter is always a subset of the active filter.
In [6], the author proposes an enhancement of this approach
through the use of two active sub filters. When one filter is
full, the second is flushed and the two filters switch their roles.
In our work, we adopted this approach for Bloom filter aging.

2) Hashing based filters: Instead of using a Bloom filter to
query if a SMS is member of inserted spam messages in the
filter, we may use a hashing based method. A hashing function
is used to create a hashed value of the SMS reported as SPAM
and insert it in a list. A first advantage of using a hashing

method is to guaranty anonymity of the SMS content. The
limit probability of a false positive within a list containing n
hashed values is the probability to get at least a false positive.
Therefore, we obtain:

fp = 1− (1− 1

2

b

)n (3)

Where b is the hashed value size.

III. DESIGN OF THE DEFENSE SYSTEM

Fig. 1: Hinky platform architecture.

Figure 1 depicts the architecture of the Hinky platform.
Our system relies on two components. The first component
is located on the user’s mobile phone. It contains a local
filter maintained by the mobile user. The second component
is the core engine. It is located on one or several collaborative
servers. It contains the group filters shared by trustworthy users
and a global filter shared by different groups.

A. Efficient Filtering Design

We first formulate the SMS filtering problem with both
Bloom filters and hashing functions. We present the perfor-
mance of each of them in terms of false positives, lookup
time and storage size. The characteristics of mobile phones
make the SMS filtering problem using signature matching
unique: (i) the filtering system has to keep the spam signature
as small as possible, because it needs to support a large
number of spams. Storing undesired SMS PDUs is waste since
the defense system’s aim is to remove them and protect the
user from their content. Moreover, we want to make a fast
decision to match an incoming SMS against the set of available
signatures instead of parsing the SMS and compare its content
with the set of available SMSs. (ii) as stated before, the SMS
service is critical and the removal of a legitimate SMS will
be unacceptable. The filtering technique has to keep a null or
a very low false positive rate; (iii) in a collaborative filtering
approach, we have to handle multiple filters from different
users. Thus, the raising issue is to merge them then perform
matching or perform per-filter matching. (iv) Bloom filters
were stated as a good candidate for filtering e-mail spam



Fig. 2: The probability of a false positive in a Bloom filter of
size 8KB.

[3], however their performance compared to a hashing based
signature for SMS is not assessed. In Hinky, architecture we
are using different types of filters for local, group and global
treatment. Each of them is different in terms of size and
available resources on the hosting host. Choosing the right
filter representation for each of them is our goal.

B. Bloom Filter numerical analysis

We have performed a numerical analysis of Bloom filters
to identify their false positive probability and rate for filtering
system level SMS messages.

1) Probability of a false positive: We are interested in
the trade-off between the number of hash functions and the
number of inserted elements in the best case where k is
computed by the equation 2. We observe that k decreases when
the number of inserted elements increases. However, when we
increase the size of the filter, we need more k hash functions to
insert the same number of elements and achieve the minimum
false positive. Thus, a smaller bloom filter implies less hash
functions and a bigger filter implies the use of more hash
functions to achieve the minimum false positive. In a next
step, we analyze numerically the probability of false positive
while varying the number of hash functions k and the number
of inserted elements. Figure 2 depicts their effect on the false
positive probability. We observe that for a given bloom filter
with a fixed size, increasing the number of hash functions
or the number of inserted elements increases the probability
of false positives. Moreover, increasing the size of the bloom
filter decreases the probability of false positives.

2) False positive rate: In the previous analysis, we have
assumed that n elements are already inserted in the filter
to compute the false positive probability. However, we are
interested in the number of false positive when inserting a new
element. Therefore, we start with an empty filter and we insert
one element at each step. Let p(n) = (1 − (1 − 1

m )nk)k the
probability of a false positive after inserting n elements with a
fixed filter size m and k hash functions used per element. Let
NBfp the number of false positive items after one element is
inserted in the filter. Initially NBfp(0) = 0 where the filter

Fig. 3: Impact of the number of inserted elements on the false
positive rate.

is empty. Then we proceed as follows to compute the number
of false positives per inserted elements. When a first element
is inserted in the filter, we have NBfp(1) = NBfp(0) + 1×
p(0)+0×(1−p(0)). By recurrence, we can computer the num-
ber of false positive after inserting n elements, which is equal
to NBfp(n) = NBfp(n−1)+1×p(n−1)+0×(1−p(n−1)).
Then the false positive rate after inserting n elements can be
written as follows.

fpr(n) =
NBfp(n)

n
(4)

This analysis tells us that bounding the number of false
positives implies bounding the number of inserted elements in
the Bloom Filter. Figure 3b depicts the effect of the number
of inserted elements on the false positive rate. The circles
marked plots present the false positive rate computed by the
equation 4 and the square marked plots presents the estimation
of the false positive rate according to the estimation ( 12 )

k

proposed in [4]. We observe that when the Bloom filter and
the number of inserted elements are small, the estimation fits
our formula. However, when the number of inserted elements
is important or when the filter is large the lower bound of
the false positive rate proposed in [4] is overestimated. In our
work, we use multiple bloom filters from different users. Thus,
we are interested in analysing the probability of a false positive
in case of merging N Bloom filters or keeping them disjoint
to query an element.

3) Merging or not users Bloom filters: Let N=n1+n2+...+
ns where s is the number of users sharing their bloom filters in
our defense system and ni is the number of elements inserted
in each bloom filter. When merging different users Bloom
filters, the probability of false positive is fpmerge(N) =
(1−(1− 1

m )Nk)k. In the second case, where we keep the filters
disjoint, the probability to get a false positive is the probability
of a false positive in at least one user’s filter. Hence, we obtain:
fpdisjoint = 1− (1− p(n))s. Figure 4 depicts the difference
between the two probabilities while varying the number of
inserted elements and the number of hashing functions. The
merged filter has a size of 8KB and each of the separated filter
has a size of 4KB. We observe that merging the filters has a



Fig. 4: The difference of probabilities of a false positive
between bloom filters merging and keeping them disjoint
before querying.

lower probability of a false positive than keeping all user’s
filters separated.

C. Analysis of hash based SMS filtering

An SMS filter is defined as a set of elements where each
element represents one SMS. We have tried two hash functions
to represents this set, where each SMS is hashed into k bits
and stored into a list. We compared the performance of the
two hashing algorithms MD5 and FNV [7] to create SMS
hashes. In our experiment, we used 106 different SMS and we
computed the number of false positive after inserting a new
SMS hashed value in the list. Using a 16 bits hashed value
of a SMS, empirical and theoretic results are close for both
MD5 and FNV. The difference between empirical and theoretic
results is around 0.01 for FNV and 0.05 for MD5. Therefore,
our focus goes on the FNV based hashes which are dedicated
to small messages like SMS. We found that FNV false positive
probability is close to 10−9 for a list of size 4000 entries and
a 40 bits hashed value. This probability becomes close to 0
with 400000 entries and 48 bits hashed values. Thus, the FNV
algorithm provides a lower false positive rate and it was shown
that its throughput is acceptable [8].

D. Simulation study of Bloom Filter and Hash functions

While the above experiments look into the theoretical per-
formance of hashing and bloom filters to create SMS filter-
ing lists, their performance depends on their implementation
within the target host. In [9], authors state that a person
receives on average one SPAM per day. We evaluated hashing
functions and bloom filters for the different required filters of
the Hinky platform: local, group and global. We have assessed
their filtering capacity in terms of number of stored SMS,
their storage cost and lookup time. We fixed the number of
inserted elements for each filter as follows: 4000 elements
for the local filter, 400000 elements for the group filter and
50000000 elements for the global filter. We implemented the
local filter on an Android simulator and it is persisted in a

Filter Type Filtering Method Parameters
Local Hashing FNV-40 bits
Group Hashing FNV-48 bits
Global Bloom k=30, m=256MB

TABLE I: Different filters representation in the Hinky plat-
form.

SQLite database. The group and global filters are located on a
host with an 2.4Ghz Bi-processor CPU machine and 4GB of
memory. The two filters are persisted in a MySQL database.

1) Local filter: Using Bloom filters the filter capacity varies
between 2000 and 4000 elements. This is due to the aging
mechanism which relies on two sub filters as explained in
section II-B1. However, the hashing set contains mostly the
4000 elements. Each element is a 40 bits FNV hashed value.
When we need to insert a new SMS the last element is
removed and replaced by the new one. The two sub Bloom
filters have a 20KB size to achieve the 10−9 false positive
rate. The hashing list requires the same storage with a 40 bits
FNV hashed values. While inserting an element, we measured
the time of its lookup and its insertion in the database if it
does not exist. We found that by using the hashing method
this time is around 0.3 seconds and 0.6 for a Bloom filter.
The main reason for the difference is the cost to compute the
k hash functions and access the k bits positions. Therefore,
we observe that a hashing method is more performant than a
Bloom filter for the local filter.

2) Group filter: For the same reason as above, the group
filter capacity using the FNV hashing method is larger than
a Bloom filter. That hashing list contains at most 400000
elements. The storage of these elements requires 2.06 MB
using a Bloom filter and 2.3 MB using the FNV method with
48 bits hashed values. The false positive probability was fixed
to 10−9 for the two methods. The lookup and insertion time
for the hashing method is 2 times faster than the bloom filter.

3) Global filter: For the global filter with Bloom filter, we
fixed the number of hashing functions K=30. The hashing
based filter uses an MD5 hashing method with a 128 bits
hashed values. The capacity of a Bloom filter varies between
0 and 5×107 inserted elements. We used a Cold Cache strategy
for the filter where we remove all elements when the filter is
full. A hashing based method provides the maximum filtering
capacity of 5×107. To store the 5×107 elements in the filter
with a false positive probability close to 10−9 the Bloom filter
requires 256 MB and a hashing method based on MD5 128
bits hashed values requires 762 MB. We found that the lookup
and insertion time for the Bloom filter is around 0.01 seconds.
For the hashing method this time linear and becomes greater
than 0.01 seconds after inserting 4000 elements

The table I shows the required filtering methods for each
filter in our defense system.

IV. IMPLEMENTATION

We have implemented our defense system according to
the architecture described in Figure 1. We have developed a
communication protocol between the mobile and the server



components to register users, create filtering groups and to
check an SMS. The different messages are the following:

• The register message: is used by the mobile user to
register itself within the filtering service running on
a dedicated server. The message carries the login and
password provided by the user.

• The join message: is used by a mobile user to join a
filtering group of its choice. The user needs to provide
the name of the group which is the login of a trusted user
providing its filter.

• The leave message: is used to leave a group by providing
its credentials and the list of groups.

• The reportSpam: is used to report an SMS as a spam to
the group filter. The message carries the user credentials
and the hashed value of the SMS.

• The isSpam: is used to check if an incoming SMS is a
spam or not. The collaborative server will check firstly
the group filter, then the global filter. A mode where the
group filter is pushed regularly to the mobile is available
as well.

The different messages between the user and the collaborative
server are carried over the HTTP/HTTPS protocols.

A. Mobile side implementation

On the mobile we implemented the local filter with the
parameters identified in table I. The filter contains hashed
values of SMS indicated as SPAM by the user. The mobile side
application also provides a user interface to manage blocked
SMS and the list of filtering groups. All the application data
(filter, lists and groups) are stored in an SQLite data base.

B. Core Engine implementation

The collaborative server uses Jetty and MySQL to manage
mobile clients requests to join groups, report spam as SMS
and check SMS as spam or not. The server also maintains the
global filter where an SMS identified as spam by many groups
is inserted. The identification relies on a threshold function
which computes the number of reports of a spam over existing
groups. If the number exceeds a predefined value, the SMS
hashed value is inserted in the global Bloom filter. To manage
the global filter persistence, we use an approach close to the
Prevayler project [10]. The Bloom filter is stored in a file
which is loaded in memory as an object. The transactions are
executed in memory over this object. Periodically, a snapshot
is taken on the object to synchronize it to the system file.

C. A friendship mechanism for trust filtering

Users of the Hinky platform share their filters with the basic
concept of friend. Each user can benefit from a local filter of
another user by creating a friendship link with him. The link
is created by sending a join message with the identifier of this
friend. Therefore, when the mobile side application of Hinky
checks if an SMS is a spam or not, it sends an isSpam request
to the server. The server identifies the list of friendship links
of the user. Then it does a lookup over their filters to identify
if one of them contains the SMS to be checked. Therefore,

each group is like a dynamic view over the set of users filters
available on the server. When a user leaves a group (a friend),
we only remove the identifier of his friend from the list of
his friendship links. This mechanism has the advantage to be
simple and it is driven by the user. It prevents from false
reports since we only verify an SMS on trusted friends. A
malicious user can not pollute a group filter since it need to
be a trusted friend. We have to note that we used a direct
friendship relation in our system. Each filter group viewed by
a user contains only filters from his direct friends.

V. CONCLUSIONS

We have presented a solution to defeat SMS spam over
smartphones using a user centric approach. Where users share
their filters using a cooperative friendship mechanism. We
believe that fighting SMS spam is a user problem rather than
a telephony operator problem. The reason is that spammers
are usually customers of the operator and they pay to get the
SMS delivered to its destination. Therefore, operators have
incentives, sometimes even contractual ones to provide the
SMS service to all their customers including spammers. In
our solution, we analyze two different methods to construct an
efficient SMS filtering mechanism: Bloom filter and content
hashing based lists. Our analysis targeted the rate of false
positive which is an important metric due to the criticality
of an SMS. We found that a hashing based approach provides
better lookup time than a bloom filter and it supports the dele-
tion operation which is missing in a Bloom filter. Therefore,
a hashing list has a better capacity than a Bloom filter for
this particular function. Currently, filtering users group’s are
created manually using a join mechanism. We are working on
the automatic creation of these groups using social or business
networks. We also plan to evaluate the energy consumption of
our filtering approach on a smartphone.
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